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A. Supplementary Materials and Methods 
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A.1 Patient Characteristics and Outcomes 
 
A 1.1 Patient Characteristics  
 
200 cases of de novo AML occurring in adults were selected from a larger cohort of AML patients enrolled in a single 
institution tissue banking protocol (with explicit consent for whole genome sequencing) that was approved by the 
Washington University Human Studies Committee (WU HSC #01-1014). All patients were between ages 18 and 88 and 
had previously untreated de novo AML.  All samples were collected between November of 2001 and March of 2010. The 
study was designed and powered to detect >99% of mutations (at least once) that are present in at least 5% of all de novo 
AML cases; cases were chosen from a collection of more than 
400 consented AML samples to represent the currently 
recognized subtypes of the disease (based on morphologic and 
cytogenetic criteria).  Additionally, we required adequate sample 
quality and inventory for multiple testing platforms. Clinical 
characteristics at diagnosis, including peripheral blood white cell 
counts, blast percentages in blood and marrow, the distributions 
of FAB subtypes and cytogenetic risk groups, 
immunophenotypes, and the frequencies of known recurrently 
mutated genes (e.g., FLT3, NPM1, DNMT3A, TP53, etc.) were 
highly representative of adult patients with de novo AML (Table 
1) (maintext references 8,15,16). Patients were treated in 
accordance with NCCN guidelines (www.nccn.org), with an 
emphasis on enrollment in therapeutic clinical trials wherever 
possible; however, patients were not treated uniformly within the intermediate and unfavorable cytogenetic risk groups, 
limiting the ability of this study to be used for outcomes predictions within these groups. Patients with unfavorable risk 
underwent allogeneic stem cell transplant if they were medically fit for the risks of transplantation, and if a suitably 
matched donor was available (22/43 patients: 8 matched sibling donors, 13 matched unrelated donors, and 1 
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haploidentical donor). Many intermediate risk patients also underwent allogeneic transplantation at some point in their 
disease course (48/115 patients: 24 matched sibling donors, 22 matched unrelated donors, and 2 haploidentical donors). 
Clinical data for all patients, including the treatment approach and outcomes data, are presented in Supplementary Table 
1, and a multivariate analysis of outcomes is presented in the Supplementary Results (Supplementary Table 2). Overall 
and event- free survival data (classified by cytogenetic risk groups) are shown in Supplementary Figure 1. 

 
A 1.2 Multivariate analysis of outcomes  
 
The patients who participated in this study were not treated in a uniform fashion (Table S1).  Many younger patients with 
intermediate and unfavorable risk cytogenetics were treated with allogeneic stem cell transplants at some point in their 
treatment course.  Analysis of outcomes was therefore confounded by the non-uniform treatment of intermediate risk and 
unfavorable risk patients, and the relatively small sample size of the study. 
 
For both event free and overall survival, the variables in the base model were the same: the total peripheral blood white 
blood cell (WBC) count at presentation, and cytogenetic risk.  A white blood cell count (WBC) of > 16,000/ul in the 
peripheral blood at presentation was associated with poorer survival.  The three cytogenetic-risk groups were associated 
with different survival outcomes in the expected directions:  patients with favorable cytogenetic risk had better survival 
than the other two groups, and those with intermediate risk had better survival than those with unfavorable risk.  These 
models incorporated age as a stratifying variable rather than as a covariate, for two reasons: 1) age is known to affect 
outcome, but our primary goal was to obtain estimates of the effects of the other variables, and 2) there was an indication 
that age (as a covariate) violated the proportional-hazards assumption.  Using it as a stratification variable removed this 
problem. 
 
The genes that were significant or nearly significant in univariate survival models were added separately to the base 
model.  TP53 was the only gene that had a significant effect when added to the base model for overall survival, with a 
hazard ratio of 2.61 (95% CI: 1.30 - 5.23.)  DNMT3A and FLT3 had p-values of 0.08 and 0.09, respectively.  With TP53 in 
the model, unfavorable cytogenetics was not a predictor of survival, since 14 of the 16 patients with TP53 mutations had 
unfavorable risk, creating confounding variables.  The same was true for the analysis of event-free survival (Table S2). 
 
The same steps were used to create the model for event-free survival.  TP53 and FLT3 were both associated with poorer 
survival when added to the base model.  A final model with WBC, cytogenetic risk, TP53, and FLT3 was therefore 
created; both genes were still significant when placed in the model together.   



8	
  
	
  

8	
  
	
  

 
A.2. Copy number and LOH analysis 
 
A.2.1 Copy Number and LOH Methods 
 
Affymetrix Genome Wide SNP Arrays v6 were used to assay the data. Intensity values were normalized using Partek 
Genomics Suite. Segmentation and copy number calling were done using R (version 2.15.1): Log2 ratios for each probe 
were boosted by 25% to account for tumor/normal admixture, then segmented using Circular Binary Segmentation (CBS), 
as implemented in the DNACopy package (v1.24.0). Adjacent segments with similar copy number were then merged. 
Likely false positives were removed by requiring segments to contain at least 30 probes and be at least 35kb in length, 
criteria based on previous work1. Loss of heterozygosity/Uniparental Disomy was assayed by segmenting SNP data using 
CBS and manually reviewed to arrive at a high-confidence set of calls. Results are included in Table S5 and shown in 
Figure S2. 
 
A.2.2 Copy number alterations in AML genomes 
 
Most de novo AML samples with intermediate and favorable risk cytogenetics had very few copy number events detected 
by high-resolution SNP arrays (Figure S2 and Table S5).  133 of the 200 cases (67%) contained one or more detectable 
somatic copy-number amplifications or deletions. Overall, we detected a median of one somatic copy number alteration 
per genome, comparable to what was reported in Walter et al (2009) 3 ; 79/86 cases in that study were included in this 
dataset.  In cases with unfavorable risk cytogenetics, the number of copy number variants was considerably higher, since 
all of these samples have cytogenetically detectable copy number alterations (median 6 copy number events per case, 
maximum of 57). These cases contain several expected copy number changes, including deletions that frequently 
involved large portions of chromosomes 5 and 7, and amplification of all or part of chromosome 8. No cases contained 
evidence of chromothripsis 18.  Several small events affected recurrently mutated AML genes, including focal deletions 
containing DNMT3A, STAG2, KDM6A, and NF1. We also identified 22 copy number neutral LOH events (also known as 
partial uniparental disomy, or pUPD) in 19 samples; five of those events affected chromosome 17p in cases with 
mutations of TP53, leading to loss of heterozygosity. Other important genes in regions of pUPD included RUNX1, WT1, 
and U2AF1.  
 

 
A.3. DNA sequencing and analysis 
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A.3.1. Illumina library construction and whole genome sequencing  
 
The procedure described by Mardis et al 2 was followed for library construction and whole genome sequencing. Briefly, 
Illumina DNA sequencing was used to generate between 58.5 and 155.9 billion base pairs of sequence data for each of 
the 50 tumors and their matched normal samples, with haploid coverages ranging from 18.9 to 50.4 (Table S3). 
Comparison of heterozygous SNPs detected in the whole genome sequencing (WGS) data with SNP array genotypes 
confirmed bi-allelic detection of between 96.60 and 99.86 percent of the heterozygous array SNPs in the 50 cases. 
Detailed coverages for all cases are included in Table S3. 
 
A.3.2. Illumina library construction and exome sequencing 
 
Libraries for whole exome sequencing were constructed and sequenced on either an Illumina HiSeq 2000 or Illumina GA-
IIX using 76 bp paired-end reads.  Details of whole exome library construction have been given elsewhere 3. Standard 
quality control metrics, including error rates, percentage passing filter reads, and total Gb produced, were used to 
characterize process performance before downstream analysis. The Illumina pipeline generates data files (BAM files) that 
contain the reads together with quality parameters. Output from Illumina software was processed by the “Picard” data 
processing pipeline to yield BAM files containing aligned reads (via MAQ or BWA, to the NCBI Human Reference 
Genome Build hg18) with well-calibrated quality scores 4,5. Exome sequencing coverage for 150 cases are included in 
Table S3. 
 
A.3.3. Mutation detection pipeline 
 
For each sample, reads were aligned using either Maq 0.6.8 or 0.7.1 or BWA 0.5.5 on a per-lane basis, merged into a 
single BAM file, and duplicate reads were removed using Picard 1.17, 1.22, or 1.25 (http://picard.sourceforge.net). 
Sample variants were called using Samtools (svn rev 320, 453, 544, or 599) 6.  Somatic single nucleotide variants were 
detected using SomaticSniper7. High quality somatic predictions were defined as those sites with a SomaticSniper 
somatic score greater than 40 and an average mapping quality greater than 40. Indels in all samples were called using a 
combination of Pindel 8 and GATK 9. Somatic variants were grouped into tiers based on genome annotation as described 
previously2. Y chromosome variants were removed for all female patients. 
 
A.3.4. Structural variant detection   
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Structural variants (SVs) in all samples were predicted by BreakDancer10 and SquareDancer (unpublished). All SV 
predictions were filtered using TIGRA (Chen et al., in preparation) to identify assembled breakpoints in SV flanking reads. 
The same procedure as described in Ding et al. 11 for selecting somatic SVs was used. 

A.3.5. Capture array design for WGS cases 
 
We used custom sequence capture arrays from Roche Nimblegen to validate putative WGS mutations. To perform solid 
phase capture validation for individual samples, we included all tier 1 to 3 sites and all coding exons of 11 genes (CBL, 
CEBPA, DNMT3A, GATA1, JAK1, JAK2, NOTCH1, PTPN11, RUNX1, TET2, and TYK2).  
 
For small insertions and SNVs, the targeted regions were exactly 200 bp centered on the variant. For small deletions, the 
deleted sequence plus 100 bp of sequence flanking each end of the deletion were selected. 
 
For putative somatic SVs, we requested probes tiled across the predicted breakpoint flanking 100 bp of the outermost, 
predicted breakpoint. For larger insertions a single region was requested, but for translocations, deletions, and inversions 
etc, we requested two targets, one for each breakpoint. Roche Nimblegen design parameters allowed for probes with up 
to five additional sequence matches elsewhere in the genome. 
 
A.3.6. Capture validation of exome data 
 
Exome probes were designed as described for whole genome, except the targets consisted of the following: a) all putative 
SNVs, indels, and SVs identified in the exome sequencing, b) all tier 1 SNVs and indels found in the 50 cases sequenced 
by WGS, c) all exons from significantly mutated genes found in the 50 tumors sequenced by WGS, d) all recurrent (within 
200bp) tier 2/3 mutations found in the WGS. 

 
A.3.7. Alignment of solid and liquid phase capture validation data 
 
We generated 100 bp paired-end Illumina sequence data for 200 tumor or normal genomes. Illumina reads were mapped 
to the NCBI Build 36 reference sequence (BWA v0.5.5 or 0.5.9), merged into BAM files (SAMtools v1 r544 or r599), and 
duplicate reads were tagged (Picard v1.17 or 1.29). Coverage of target sequences was assessed using RefCov software 
(T. Wylie et al, unpublished). We obtained greater than 20X haploid reference coverage for 66.0 to 98.6% (median 94.5%) 
of the targeted sites in each sample pair.  
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A.3.8. Validation of SNVs and dinucleotide variants 
 
Putative SNVs and dinucleotide variants were validated using VarScan 2 (http://varscan.sourceforge.net) with the 
following parameters: 
 
-min-coverage 30 
-min-var-freq 0.08 
-normal-purity 1 
-p-value 0.10 
-somatic-p-value 0.001 
-validation 1 
 
Based on the allele frequency and reads supporting reference and variant alleles at the position of each predicted variant 
in the tumor and normal BAMs, VarScan classifies each putative somatic event as Reference (wildtype), Germline, 
Somatic, or LOH. Validated somatic mutations are further filtered with additional filters that removes false positives 
supported by strand specific artifacts, read position artifacts, or poorly mapped reads. Potentially ambiguous sites were 
further resolved with additional visualization of the primary and validation data. 
 
Validation data was supplemented with information from previous studies that used the same tumors11,12. CEBPA had low 
coverage in validation sequencing data, so RNA-sequencing was used to provide additional evidence for the presence of 
somatic mutations. samtools mpileup (parameters: -B -q 1) was run on the CEBPA locus and the results analyzed with 
Varscan2 (params --min-coverage 3 --min-var-freq 0.05 --p-value 0.10). Extensive manual curation was performed to 
remove false positive variants and rescue false-negatives.   
 
A.3.9. Validation of indels 
 
Small (1-2 bp) Indel Validation with liquid- and Solid-Phase Capture Validation Data 
 
Putative indels 1-2 bp in size were converted to BED format and provided as the target intervals for the GATK 
IndelRealigner algorithm. BAM files for the tumor and matched normal were re-aligned independently using this set of 
target intervals. 
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To validate the original predictions, we developed a matching algorithm that attempts to match VarScan validation calls 
with the original indel predictions. Specifically, the algorithm searched for a validated indel of same type (insertion or 
deletion) and similar size (within 1 bp). To allow for differences in gapped alignments, the algorithm allowed matches at 
slightly different genomic positions, so long as the validated indel mapped within a specified interval (indel_size + 2bp) of 
the original prediction. Matched indels reported “Somatic” in the tumor sample were manually reviewed in the re-aligned 
BAM files using IGV to visualize the data. 
 
Medium (3-100 bp) Indel Validation with liquid and Solid-Phase Capture Validation Data 
 
Sample validation data for indels 3-100 bp in size were assembled using the TIGRA assembler (Chen et al. unpublished). 
Breakpoints and microhomology were identified using Crossmatch alignments (version 1.080721, Green unpublished). 
We then sized the chosen contigs to 500 bp length by trimming excess sequence or padding from the reference sequence 
and compared overlapping contigs using the dpAlign module of BioPerl (http://www.bioperl.org/wiki/Main_Page) to 
generate an “Ends-free” alignment between the two pairs. If an alignment contained no gaps, shared at least 98% 
sequence identity and had a length of at least 95 bp then the leftmost contig that aligned to the reference was retained. 
Contigs that remained after merging were concatenated to the NCBI Build36 reference sequence as additional novel 
contigs and the validation reads were mapped back to the expanded reference using BWA and depduplicated using 
Picard (http://sourceforge.net/apps/mediawiki/picard). Those with a mapping quality greater than 0 that completely 
spanned the established indel breakpoints without gaps in the alignment were identified. Variants with greater than 30 
reads aligning to either the reference or the indel contig and a variant allele frequency difference of greater than 10% 
between any two samples were manually reviewed. Additionally, 454 and 3730 sequencing were used to resequence the 
NPM1 and FLT3 recurrent mutation sites in some samples as previously reported11. 
 
A.3.10. Validation of structural variants 
 
All BWA-aligned capture reads and their mates that mapped within 1000 bp of the structural variant breakpoints were 
realigned by CrossMatch (version 1.080721) to the assembled SV contigs and to the reference. The threshold for an 
acceptable alignment was ≤ 1 unaligned base at either end, ≤ 1% substitutions, ≤ 1% indels and a CrossMatch score ≥ 
50. An SV-supporting read was required to span the breakpoint on the SV contig, align to 10 bases of flanking on each 
side of the breakpoint, and have no alignment to the reference above minimum alignment criteria. SV-supporting reads 
were tabulated in the tumor and normal sample separately, and Fisher’s exact test was applied to these counts to 
determine the somatic status of each variant. The same method for determining SV-supporting reads was applied to the 
WGS alignment data for those calls deemed somatic by all other criteria. Variants with any SV-supporting reads in the 
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normal WGS sample were filtered out as potential germline variants or alignment artifacts. An additional filter was put in 
place to filter ALU sequences and the remaining high confidence SV events were manually reviewed based on BWA 
mapping of supporting capture validation data to the assembled SV contigs spanning the breakpoint.  
 
A.3.11. Kernel density analysis for identifying clusters and estimating allele frequencies for each tumor  
 
Tumor clonality estimates were determined using the mutation allele frequencies from sites with deep coverage from 
capture validation data. To minimize the effect of coverage on allele frequency estimations, only mutations with >100x 
coverage in both the normal and tumor validation data were included in this analysis. Varscan 2 was utilized on whole-
genome sequencing data to eliminate all LOH SNV calls. For each chromosome, the variant allele frequencies were 
plotted from both the tumor and normal in copy-number neutral regions. A kernel density estimate (KDE) plot was drawn 
for tumor variant allele frequencies using the density function in R. A peak-finding function evaluated each KDE plot to 
determine the number of peaks. The clusters identified served as an estimation of the number and relative composition of 
clones and subclones present in each tumor. 
 
A.3.12. Significantly mutated gene analysis 
 
We used components of the Mutational Significance in Cancer (MuSiC) package to determine significantly mutated genes 
(SMG) and pathways. The SMG test in MuSiC assigns mutations to seven categories, including AT transition, AT 
transversion, CG transition, CG transversion, CpG transition, CpG transversion, and indel, and then uses statistical tests 
including convolution, Fisher’s test, and a likelihood test to combine the category-specific binomials to obtain an overall p 
value All P-values were combined using the same methods as described in Dees et al.13. SMGs are listed in Table S7. 
 
A.3.13. Recurrent mutations in non-genic regions  
 
We screened for recurrent non-coding mutations in the 50 samples with whole genome sequencing data, and identified 69 
tier 2 or 3 regions with two mutations within 200 base pairs of each other (Table S8). These regions were then annotated 
with ENCODE chromatin state segmentation data from the K562 erythroleukemia cell line, which expresses BCR-ABL, 
and which is the only myeloid leukemia line that has been fully analyzed to date14. 87% of the regions were annotated as 
heterochromatin, repressed, or repetitive, and are unlikely to have any functional role. Of the remaining mutations, most 
have low mammalian conservation scores. Only one site was associated with an active promoter, which was upstream 
from a pseudogene. We compared these regions to results from whole genome sequencing of an additional 50 AML 
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genomes (unpublished data), and identified no overlapping regions with recurrent mutations between the two sets, 
suggesting that most of these mutations are random. 
 
A.3.14. Mitochondrial variants  
 
Human cells contain dozens to hundreds of mitochondria, and each mitochondrion contains multiple copies of DNA 
(mtDNA).  Somatic mutations have been identified in mtDNA in a variety of cancers and can be homoplastic (all of the 
mtDNA copies are identical in all cells) or heteroplastic (only a fraction of the mtDNA in cells carry the mutation)15. We 
identified 40 variants (in 31 patients) that were enriched in the tumor samples relative to the skin (Table S9).  Many of 
these variants were heteroplastic in the skin at low levels (range 0.1-7.7%).  The low level of heteroplasty in the skin 
samples may represent tumor cell contamination, or inherited variants that are variable from tissue to tissue, as previously 
described in normal individuals16. The functional significance of these variants is unknown, and several have been 
previously described in normal individuals17. These results are similar to the mtDNA mutations independently identified 
and reported for several of these AML samples, extracted from this dataset18.    
 
A.3.15. Germline Variant Calling 
 
Germline SNPs and indels were identified in GRCh37 aligned tumor-normal BAM pairs using VarScan 2.2.6 
(http://varscan.sourceforge.net) with the following parameters: min-coverage 30 -min-var-freq 0.08 -normal-purity 1 -p-
value 0.10 -somatic-p-value 0.001 -validation 1). Additional germline SNPs were identified using Samtools (v1.1.16-
(r963:234)) and additional germline indels were extracted using GATK (v3 
http://genome.cshlp.org/cgi/reprint/gr.107524.110v1). Predicted variants were filtered to remove false positives from 
homopolymer repeats, strand-specific artifacts, ambiguously mapped reads, and variants supported exclusively by low 
quality data at the beginning or end of reads.  Additionally, those variants with a supporting variant allele frequency <8% 
were filtered.  Variants were annotated using a combination of NCBI Refseq and Ensembl transcripts and only truncating 
variants defined as nonsense, frameshift, or disrupting the canonical splice donor/acceptor were retained. Additional filters 
were applied to remove variants affecting olfactory receptors, annotated noncoding/RNA-genes, annotated pseudogenes, 
transcripts with incomplete open reading frames lacking a start or stop codon, predicted genes, hypothetical genes, 
transcripts exclusive to Ensembl, as well as genes suspected to have missing paralogs in the human reference.  Common 
truncation variants with a reported frequency >1% from the 1000 Genomes project or the Caucasian population in the 
NHLBI GO Exome Sequence Project data were filtered, as well as any germline variants that were recurrent at the same 
position in more than 2% of the cohort. Sequence data supporting all remaining germline truncating variants were visually 
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examined with Integrative Genomics Viewer and any data that appeared to be an artifact, somatic mutation, or complex 
in-frame indels were discarded. 
 
We interrogated the variants found in normal skin samples from 200 subjects, and identified 1,547 predicted truncating 
variants (1,364 unique alleles) in 1,219 genes (Table S11). Predicted truncating variants included frameshift-deletions 
(30.9%), frameshift-insertions (11.5%), stop-gain (37.0%) and splice site alterations (20.6%).  All 1,364 alleles have been 
previously identified in other populations (82 in dbSNP build 135, the remainder in the NHLBI Exome Sequencing Project). 
Truncating variants found in the skin samples were common (Figure S6a, median of 7 per subject), consistent with 
recently reported findings19. The burden of truncating variants was not associated with age at AML diagnosis (Figure 
S6b).  Among the 154 genes with nonsynonymous somatic mutations in at least 2 subjects, 58 truncating mutations in 30 
genes were detected in the skin samples; 14 genes were mutated more than once (Figure S6c).  This proportion is 
greater than expected by chance (P =10-50, compared to 1,489 germline truncations in the remaining 23,491 genes with 
adequate sequence coverage).  For example, we previously reported that two of the patients in this cohort with early-
onset AML (diagnosed at age 25) had novel germline truncating mutations in WT1 (R430*) or PTPN11 (Y197*)12.  
However, a minority of genes with germline truncating alleles are expressed in AML cells (23.1% of variants with 10 or 
more reads in tumor by RNA-seq), and only a small fraction of these (16.2%) demonstrate mutant allele-specific loss of 
expression in the tumors, suggesting that the vast majority of the truncating variants are irrelevant for AML pathogenesis.  
 
A.3.15 Allele-specific expression 
 
Tumor and RNA-seq readcounts were extracted and used to determine the ratios of mutant-allele to wild-type allele 
expression for each validated SNV. Six putative tumor-suppressor genes are shown in Figure S4.20.  Only sites with at 
least 10x coverage were considered to minimize sampling error. On the plots, shifts away from the diagonal indicate allelic 
expression bias. Some sites appear at or near 100% in the RNA-seq. Hemizygosity due to copy number changes, UPD, 
or presence on sex chromosomes in males explain some, but not all of these events. 
 
 
A.3.16 Outlier analysis 
 
The number of tier 1 mutations in each sample was calculated and outlier samples were identified as those with a number 
of mutations 1.5 times the interquartile distance away from the quartiles. 
 
A.3.17 Comparison to other cancers 
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Data on tier 1 (coding) mutations was obtained from four published TCGA projects:  breast cancer21,  squamous cell lung 
cancer22, colorectal cancer23, and ovarian cancer24.  A Student’s t-test was used to compare the tier 1 mutation counts for 
all tumors in these sets to the tier 1 counts for all AML tumors. (Figure S18) 
 
 
A.4. Affymetrix Expression Array data generation and analysis 
 
The experiments and analysis were conducted by using approaches described in Payton et al.25. 
 
A.5. Pathway analysis 
 
A.5.1. Mutation Data for Pathway Analysis 
 
We analyzed combined mutation, fusion gene, and copy number data for 200 samples annotated in Supplementary 
Tables 5, 6, and 13.  For somatic mutations, we considered single nucleotide variants and small indels, ignoring 
mutations marked as silent, germline or with validation status of wild type. In total, 1,476 genes contained at least one 
such somatic mutation in at least one sample. Moreover, chromosomal rearrangements in AML patients produce fusion 
proteins, therefore in total 32 in-frame and 38 out-of-frame fusion genes identified by RNA-seq are included in the 
analysis. We also included MLL partial tandem duplications (MLL-PTD) in 9 samples and micro-deletion in 3 samples. For 
copy number data, we used focal copy number and uniparental disomy (UPD). In focal copy number data, there are 292 
altered genes in 76 samples. A total of 6,859 genes marked as containing UPD in 19 samples. (More details are given in 
Table S5) The pathway picture (Figure 2) uses this comprehensive mutation matrix on a reduced set of genes, as 
described below. 
 
For the HotNet26 subnetwork analysis below, we used a reduced mutation matrix that included the mutations and 
aberrations above, with the exception of UPD.  Regions of UPD generally span large regions of the genome, making it 
difficult to identify the target gene of each such aberration. In addition, we restricted attention to four out-of-frame fusion 
genes: two RUNX1 out-of-frame fusions (e.g. RUNX1-ADAMTS19 and RUNX1-PRRC1) in sample TCGA-AB-2854 were 
annotated as mutations (loss of function) in RUNX1. Out-of-frame fusions MDM4-DNMT3B (TCGA-AB-2904) and MLL3-
ACTR3B (TCGA-AB-2932) are marked as mutations in DNMT3B and MLL3, respectively.  Finally, the out-of-frame fusion 
MLLT10-CEP164 (TCGA-AB-2985) was annotated as a mutation in MLLT10, a myeloid transcription factor.  
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A.5.2. HotNet analysis 
 
We used HotNet26 to identify subnetworks of a large protein-protein interaction network that contain genes with significant 
numbers of aberrations, using the reduced mutation matrix described in previous section. HotNet considers each mutation 
or copy number alteration (CNA) in each sample as a unit heat source, and uses a diffusion process to derive “hot” 
subnetworks that contain more alterations than expected by chance. Therefore the significance of a subnetwork is 
determined by both the frequency of alteration of genes in the subnetwork and the local topology of the subnetwork. 
HotNet returns a list of subnetworks, each containing at least s genes, and employs a two-stage statistical test to assess 
the significance of the list of subnetworks. The first stage of the test computes a p-value for the number of subnetworks in 
the list, for different values of s, under a suitable null hypothesis. The second stage estimates the false discovery rate 
(FDR) of the list of subnetworks, providing a bound on the number of subnetworks in the list that are expected to be 
significant. Finally, we assess the significance of each individual subnetwork in the list by comparing to known pathways 
and protein complexes. 
 
We analyzed the combined mutation and copy number for the 200 samples. For each sequenced gene, we defined the 
gene as altered in a sample if the gene had an aberration in the sample, where the aberrations considered are described 
in previous section. Moreover, we discarded CNAs for which the sign of the aberration was not the same in at least 90% 
of altered samples. The resulting alteration data on 200 samples was input to HotNet. We used the interaction network 
derived from the iRefIndex27. For the HotNet statistical test, we generated random datasets in the following manner. We 
simulated mutations using an estimated background mutation rate (2.97x10-7). This rate is higher than the background 
rate observed in the 200 AML samples analyzed. Therefore, our analysis is conservative. We simulated CNAs using the 
observed distribution of CNA lengths, permuting their genomic positions. The latter minimizes potential artifacts resulting 
from functionally related genes that are both neighbors on the interaction network and close enough on the genome that 
they are affected by the same CNA. We also removed genes that are potentially biased toward a higher number of silent 
mutations than expected (because of their length or higher background mutation rate). 
 
Using this approach HotNet identified 4 subnetworks containing at least 6 genes (P < 0.001) with a corresponding FDR <= 
0.1 for the list of subnetworks (Table S17). To gain additional support for individual subnetworks and to focus attention on 
subnetworks with known biological function, we computed the overlap between the genes in candidate subnetworks and: 
(i) pathways from the KEGG database28; (ii) protein complexes from PINdb29.  All of the subnetworks reported by HotNet 
have statistically significant (corrected P ≤ 0.05) overlap with at least one KEGG pathway or PINdb protein complex 
(Table S18). In particular, HotNet identifies: a subnetwork containing genes in the cohesin complex, a subnetwork that 
overlaps part of the acute myeloid leukemia KEGG pathway; a subnetwork containing some genes in the polycomb 
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complex; and part of the PTIP histone methyltransferase complex. The identification of the KEGG name “Acute Myeloid 
Leukemia” pathway is obviously not a new discovery.  However, we note that this pathway was not pre-selected but rather 
automatically identified by HotNet in a large protein-protein interaction network containing more than 9000 proteins.  Thus, 
this identification serves as a positive control that HotNet identifies mutated subnetworks that are meaningful for AML 
 
A.5.3. Defining functional gene groups from biological knowledge  
 
Many genes are mutated at very low frequencies in the dataset: for example, of the 1,779 genes marked with a mutation 
in the reduced matrix we used in HotNet, 1,555 are mutated in only a single sample.  To increase our sensitivity in 
annotating these rare mutations, we combined some of the genes with rare mutations into 9 functional groups, based on 
prior knowledge of the biological function of these genes and/or prior reports of their role in AML. We combined all fusions 
involving the MLL gene into a group called “MLL-X fusions” (Figure 2 and Figure S9 and S10). We combined genes in 
the cohesin complex (Figure S7), spliceosome (Figure S11a), chromatin modifier (Figure S11b), and myeloid 
transcription factors (Figure 10c) into fS7our additional groups. We also formed groups (Figure S9) for tyrosine kinases, 
serine/threonine kinases, protein tyrosine phosphatases (PTP), and Ras proteins. We trimmed each of these gene groups 
to the subset of genes exhibiting approximate mutual exclusivity in their mutations with the following approach. (1) Define 
the initial gene set as all genes in the group having at least one exclusive mutation. (2) Remove all genes that are 
mutated in only one sample, if this sample also contains another mutation in the same group. (3) Add the remaining genes 
in the initial gene set. 
 
Table S18 lists the groups, with the corresponding mutation matrices in the above-referenced figures.  
 
 
A.5.4. One-Hit and Two-Hit mutation matrices 
 
We created two mutation matrices using the functional gene groups described above. The first is a “one-hit” mutation 
matrix, that marks a gene, or functional gene group, as altered in a sample if it has at least one mutation from the 
comprehensive mutation matrix. The second “two-hit” mutation matrix annotates when both homologs of a gene are 
mutated.  In most cases, we cannot uniquely identify which homolog is mutated, and so we mark a gene as a “two-hit” if it 
has at least two mutations, of any type, in the sample. Otherwise, if there exist only one mutation in the sample, we still 
treat the mutation on the gene as one-hit. Figure 2 in the main text shows the “two-hit” mutation matrix. 
 
A.5.5. Pathways identified by computational approach 
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We applied our Dendrix++ algorithm (Wu et al., in preparation), for identifying mutual exclusive sets of mutations to the 
one-hit mutation matrix. Dendrix++ extends our earlier De novo Driver Exclusivity (Dendrix) algorithm30, and both 
algorithms aim to find sets of mutations that occur in many patients and are (approximately) mutually exclusive. The key 
difference between the Dendrix algorithm and Dendrix++ is that Dendrix++ uses a statistical score that conditions on the 
observed frequency of each mutation.  In particular, if a gene is represented with two states (mutated or not), then the 
frequencies of each combination of states of k genes can be recorded in a 2 × 2 × … × 2 = 2k contingency table.  We 
derive an exclusivity statistic T that sums the counts in exclusive cells in the table and then perform an exact test 
(analogous to Fisher’s exact test for independence of categories) by enumerating tables with larger values of the test 
statistic T. We define the score of a gene set as –log(p), where p is the p-value of the observed value of the test statistic.  
Dendrix++ generally has higher sensitivity than Dendrix to detect sets of mutations (or mutated genes) that are strongly 
exclusive, but are mutated at lower frequencies. The maximum scoring set of genes of a given size is identified using a 
Markov Chain Monte Carlo (MCMC) approach, as described in the Dendrix paper30. 
 
We run Dendrix++ in an iterative fashion to discover multiple sets of mutually exclusive mutations/mutated genes (Figure 
S9 and S10) and perform the permutation test by generating 1,000 random mutation datasets where the mutation 
frequencies of genes are preserved. The highest scoring set found by Dendrix++ contains eight genes whose mutations 
are perfectly exclusive. We refer to this set of genes as Group A. This gene set is composed of NPM1, one of the most 
frequently mutated genes in AML, with TP53, RUNX1, MLL-X fusions and four additional fusion genes. The Group A gene 
set covers 143 (71.5%) samples and is significant by a permutation test (P < 0.001). In the second iteration, we identified 
a significant (P < 0.021) gene set containing FLT3, KRAS/NRAS, other the groups “Tyrosine kinases” and “Other 
serine/threonine kinases”.  This set, Group B, covers 104 (52%) samples with only 7 samples having more than one 
mutation.  In the third iteration Dendrix++ identified a gene set (P < 0.103) containing ASXL1, the cohesin complex, the 
group “Myeloid transcription factors”, and the group “Other epigenetic modifiers”.  This set, Group C, covers 71 (35.5%) 
samples and contains only one co-occurrence.  Figure S10 shows the mutation matrix for each of these groups. 
 
A.5.6. Patterns of pairwise co-occurrence and exclusivity among genes and gene groups 
 
We examined pairwise co-occurrence and exclusivity among somatic mutations. Given a pair of genes, we construct a 2 
×2	
 contingency table: 
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where x00 is the number of samples with no mutations in either gene, x11 is the number of samples with mutations in both 
genes, and x01 and x10 are the number of samples with a mutation in one gene or the other, respectively.  We use the one-
tailed Fisher's exact test to compute the statistical significance of mutual exclusivity (left tail) or co-occurrence (right tail) 
between mutations in the pair of genes..   
 
We performed this analysis on two somatic mutation datasets. The first includes:  27 genes and gene groups (as defined 
in A.5.3) with at least 4 mutations, and two of the cytogenetic risk categories (intermediate and unfavorable). We did not 
include the favorable cytogenetic risk category because the fusion genes PML-RARA, RUNX1-RUNX1T1, and MYH11-
CBFB define the category. We performed Fisher's exact test for each pair of genes, gene groups, and cytogenetic risk 
categories. We found 31 pairs among genes and gene groups with P < 0.04, and 4 pairs including cytogenetic risk 
categories with P < 10-7. Figure 2 and Figure S8 summarize the results. We also list the pairs and their respective p-
values in Table S19. 
 
The second somatic mutation dataset includes: all genes or gene groups with at least 1 mutation and where metagenes 
that include at least one gene with more than 2 mutations were completely split, and the four cytogenetic risk categories. 
We used Fisher’s one-tailed exact test: a pair of genes is significantly co-occurring or exclusive  by Fisher's exact test if 
the value is less than 0.05 for the right or left tails, respectively. We found 115 statistically significant (P < 0.05) mutually 
exclusive or co-occurring pairs (Table S20) 
 
A.6. mRNA and miRNA sequencing and analysis 
 
A.6.1. Messenger RNA library construction and sequencing 
 
Two micrograms of total RNA samples were arrayed into a 96-well plate and polyadenylated (PolyA+) messenger RNA 
(mRNA) was purified using the 96-well MultiMACS mRNA isolation kit on the MultiMACS 96 separator (Miltenyi Biotec, 
Germany) with on-column DNaseI-treatment as per the manufacturer's instructions. The eluted polyA+ mRNA was 
ethanol precipitated and resuspended in 10µL of DEPC treated water with 1:20 SuperaseIN (Life Technologies, USA). 
Double-stranded cDNA was synthesized from the purified polyA+ RNA using the Superscript Double-Stranded cDNA 
Synthesis kit (Life Technologies, USA) and random hexamer primers at a concentration of 5µM. The cDNA was quantified 
in a 96-well format using PicoGreen (Life Technologies, USA) and VICTOR3V Spectrophotometer (PerkinElmer, Inc. 
USA). The quality was checked on a random sampling using the High Sensitivity DNA chip Assay (Agilent).  The cDNA 
was fragmented by a Covaris E210 (Covaris, USA) for 55 seconds, using a Duty cycle of 20% and Intensity of 5. Plate-
based libraries were prepared following the BC Cancer Agency, Genome Sciences Centre (BCGSC) paired-end (PE) 
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protocol on a Biomek FX robot (Beckman-Coulter, USA). Briefly, the cDNA was purified in 96-well format using Ampure 
XP SPRI beads, and was subject to end-repair and phosphorylation by T4 DNA polymerase, Klenow DNA Polymerase, 
and T4 polynucleotide kinase respectively in a single reaction, followed by cleanup using Ampure XP SPRI beads and 3’ 
A-tailing by Klenow fragment (3’ to 5’ exo minus). After cleanup using Ampure XP SPRI beads, picogreen quantification 
was performed to determine the amount of Illumina PE adapters used in the next step of adapter ligation reaction. The 
adapter-ligated products were purified using Ampure XP SPRI beads, then PCR-amplified with Phusion DNA Polymerase 
(Thermo Fisher Scientific Inc. USA) using Illumina’s PE primer set, with cycle conditions of 98˚C 30sec followed by 10-15 
cycles of 98˚C 10 sec, 65˚C 30 sec and 72˚C 30 sec, and then 72˚C 5min. The PCR products were purified using Ampure 
XP SPRI beads, and checked with a Caliper LabChip GX for DNA samples using the High Sensitivity Assay (PerkinElmer, 
Inc. USA). PCR products with a desired size range were purified using a 96-channel size selection robot developed at the 
BCGSC, and the DNA quality was assessed and quantified using an Agilent DNA 1000 series II assay and Quant-iT 
dsDNA HS Assay Kit using Qubit fluorometer (Invitrogen), then diluted to 8nM. The final concentration was verified by 
Quant-iT dsDNA HS Assay prior to Illumina HiSeq2000 PE 75 base sequencing.  
 
A.6.2. MicroRNA library construction and sequencing 
 
Two micrograms of total RNA per sample was arrayed into 96-well plates, as above, with controls as described below. 
From the poly(A) selection flow-through, small RNAs, including miRNAs, were recovered by ethanol precipitation. Flow-
through RNA quality was checked for a subset of 12 samples using an Agilent Bioanalyzer RNA Nano chip. 
 
miRNA-Seq libraries were constructed using a plate-based protocol developed at the BCGSC. Negative controls were 
added at three stages: elution buffer was added to one well when the total RNA was loaded onto the plate, water to 
another well just before ligating the 3’ adapter, and PCR brew mix to a final well just before PCR. A 3’ adapter was ligated 
using a truncated T4 RNA ligase2 (NEB Canada, cat. M0242L) with an incubation of 1 hour at 22oC. This adapter is 
adenylated, single-strand DNA with the sequence 5’ /5rApp/ ATCTCGTATGCCGTCTTCTGCTTGT /3ddC/, which 
selectively ligates miRNAs. An RNA 5’ adapter was then added, using a T4 RNA ligase (Ambion USA, cat. AM2141) and 
ATP, and was incubated at 37oC for 1 hour. The sequence of the single strand RNA adapter is 
5’GUUCAGAGUUCUACAGUCCGACGAUCUGGUCAA3’.  
 
When ligation was complete, first-strand cDNA was synthesized using Superscript II Reverse Transcriptase (Invitrogen, 
cat.18064 014) and RT primer (5'-CAAGCAGAAGACGGCATACGAGAT-3’). This was the template for the final library 
PCR, into which we introduced index sequences to enable libraries to be identified from a sequenced pool that contains 
multiple libraries. Briefly, a PCR brew mix was made with the 3’ PCR primer (5’-CAAGCAGAAGACGGCATACGAGAT-3’), 
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Phusion Hot Start High Fidelity DNA polymerase (NEB Canada, cat. F-540L), buffer, dNTPs and DMSO. The mix was 
distributed evenly into a new 96-well plate. A Biomek FX robot (Beckman Coulter, USA) was used to transfer the PCR 
template (first-strand cDNA) and indexed 5’ PCR primers into the brew mix plate. Each indexed 5’ PCR primer, 5'-
AATGATACGGCGACCACCGACAGNNNNNNGTTCAGAGTTCTACAGTCCGA-3’, contains a unique six-nucleotide 
‘index’ (shown here as N’s), and was added to each well of the 96-well PCR brew plate. PCR was run at 98°C for 30 sec, 
followed by 15 cycles of 98°C for 15 sec, 62°C for 30 sec and 72°C for 15 sec, and finally a 5 min incubation at 72oC. 
Quality was checked across the whole plate using a Caliper LabChipGX DNA chip. PCR products were pooled, then size-
selected to remove larger cDNA fragments and smaller adapter contaminants, using the 96-channel automated size-
selection robot noted above. After size-selection, each pool was ethanol precipitated, quality checked using an Agilent 
Bioanalyzer DNA1000 chip and quantified using a Qubit fluorometer (Invitrogen, cat. Q32854). Each pool was then diluted 
to a target concentration for cluster generation and was loaded into a single lane of an Illumina GAIIx or HiSeq 2000 flow 
cell. Clusters were generated, and lanes were sequenced with a 31-bp main read for the insert and a 7-bp read for the 
index.  
 
A.6.3. Alignment and coverage analysis of RNA-seq data 
 
Using BWA version 0.5.731, we aligned chastity-passed reads to an extended human reference genome consisting of 
hg18/GRCh36 plus exon junction sequences constructed from all known transcript models in RefSeq, EnsEMBL and 
UCSC genes, as described32.  We used default BWA parameter settings but disabled Smith-Waterman alignment.  After 
alignment, the reads that aligned to exon junctions were repositioned in the genome as large-gapped alignments, using 
repositioning software developed in-house.  We removed adapter dimer sequences and soft-clipped reads that contained 
adapter sequences.  The unambiguously aligned, filtered reads were then analyzed by in-house gene coverage analysis 
software to calculate the coverage over the total collapsed exonic regions in each gene as annotated in EnsEMBL 
(version 59), and RPKM values33 were calculated to represent the normalized expression level of exons and genes. 
 
A.6.4. Preprocessing, alignment and annotation of miRNA 
Briefly, the sequence data were separated into individual samples based on the index read sequences, read quality was 
assessed, adapter sequences were trimmed, and trimmed reads were aligned to the NCBI GRCh36 reference genome. 
Below we describe these steps in more detail.  
 
For routine sequence quality checks (QC), a subset of raw sequences from each pooled lane were taken to assess the 
abundance of reads from each indexed sample in the pool, the proportion of reads that may originate from adapter dimers 
(i.e. a 5’ adapter joined to a 3’ adapter with no intervening sequence) and for the proportion of reads that map to miRBase 
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human miRNA sequences. Sequencing error is estimated by a method originally developed for SAGE34. Libraries that 
pass this QC stage are preprocessed for alignment. While the size-selected miRNAs vary somewhat in length, they are 
typically ~21 bp long, and so are shorter than the 31-bp read length; given this, each read sequence extends some 
distance into the 3' sequencing adapter. Because this non-biological sequence can interfere with aligning the read to the 
reference genome, 3’ adapter sequence is identified and removed (trimmed) from a read. The adapter-trimming algorithm 
identifies as long an adapter sequence as possible, allowing a number of mismatches that depends on the adapter length 
found. A typical sequencing run yields several million reads; using only the first (5’) 15 bases of the 3’ adapter in trimming 
makes processing efficient, while minimizing the chance that an miRNA read will match the adapter sequence.  
 
The algorithm first determines whether a read sequence should be discarded as an adapter dimer by checking whether 
the 3’ adapter sequence occurs at the start of the read. For reads passing this stage, the algorithm then tries to identify an 
exact 15-bp match anywhere within the read sequence. If it cannot, it retries, starting from the 3' end, and allowing up to 2 
mismatches. If the full 15bp is not found, decreasing lengths of adapter are checked, down to the first 8 bases, allowing 
one mismatch. If a match is still not found, from 7 bases down to 1 base is checked, with an exact match required. Finally, 
the algorithm will trim 1 base off the 3’ end of a read if it matches the first base of the adapter. This is based on two 
considerations. First, it is preferable to get a perfect alignment than an alignment that has a potential one-base mismatch. 
Second, if only 1 base of adapter is found in the read sequence, the read is likely too long to be from a miRNA and the 
effect of the trimming on its alignment would not affect this sample’s overall miRNA profiling result. 
 
After each read has been processed, a summary report is generated that contains the number of reads at each trimmed 
read length. Because the shortest mature human miRNA in miRBase v16 is 15 bp, any trimmed read that is shorter than 
this is discarded; remaining reads are submitted for alignment to the reference genome. BWA alignment(s) for each read 
are checked with a series of three filters: a) a read with more than 3 alignments is discarded as too ambiguous; b) for 
TCGA quantification reports, only perfect alignments with no mismatches are used; c) based on comparing expression 
profiles of test libraries (data not shown), reads that fail the Illumina basecalling chastity filter are retained, while reads that 
have soft-clipped CIGAR strings are discarded.  
 
For reads retained after filtering, each coordinate for each read alignment is annotated using the reference databases in 
Table S21, and requiring a minimum 3-bp overlap between the alignment and an annotation. In annotating reads we 
address two potential issues. First, a single read alignment can overlap feature annotations of different types; second, a 
read can have up to three alignment locations, and each alignment location can overlap a different type of feature 
annotation. We resolve the first issue by using heuristically determined priorities to assign a single annotation to each 
alignment. We resolve the second by collapsing multiple annotations to a single annotation, as follows.  
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If a read has more than one alignment location, and the annotations for these are different, we use the priorities from 
Table S21 to assign a single annotation to the read, as long as only one alignment is to a miRNA. When there are 
multiple alignments to different miRNAs, we flag the read as cross-mapped35, and preserve all of its miRNA annotations 
while discarding all of its non-miRNA annotations. This approach ensures that all annotation information about 
ambiguously mapped miRNAs is retained, and allows annotation ambiguity to be addressed in downstream analyses. 
Note that we consider miRNAs to be cross-mapped only if they map to different miRNAs, not to functionally identical 
miRNAs that are expressed from different locations in the genome. Such cases are indicated by miRNA miRBase names, 
which can have up to 4 separate sections separated by "-", e.g. hsa-mir-26a-1. A difference in the final (e.g. ‘-1’) section 
denotes functionally equivalent miRNAs expressed from different regions of the genome, and we consider only the first 3 
sections (e.g. ‘hsa-mir-26a’) when comparing names. As long as a read maps to multiple miRNAs for which the first 3 
sections of the name are identical (e.g. hsa-mir-26a-1 and hsa-mir-26a-2), it is treated as if it maps to only one miRNA, 
and is not flagged as cross-mapped.  
 
From the profiling results for a tumor type, for a minimum of approximately 100 samples, we identify the depth of 
sequencing required to detect the miRNAs that are expressed in a sample by considering a graph of the number of 
miRNAs detected in a sample as a function of the number of reads aligned to miRNAs (data not shown). For the current 
work, a library from a sequenced pool was required to have at least 750,000 reads mapped to miRBase annotations. For 
any sequencing run that fails to meet this threshold, we sequence the sample again to achieve at least the minimum 
number of miRNA-aligned reads.  
 
Finally, for each sample, the reads that correspond to miRNAs are summed and normalized to a million miRNA-aligned 
reads to generate the quantification files that are submitted to the DCC. Two quantification files are submitted. A 
‘precursor’ file reports miRNA abundance for pre-miRNAs, while an ‘isoform’ file reports mature and star strands 
separately (i.e. 5p and 3p strands), and includes information on variable 5’ and 3’ read alignment locations, which can 
reflect isoforms, adapter trimming and RNA degradation.  
 
 
A.6.5. Gene fusion detection and verification 
 
RNA-seq libraries were assembled with ABySS (version 1.3.2 - http://www.bcgsc.ca/platform/bioinfo/software/abyss 
/releases) using k-mer values of 26 to 50 as previously described36. The contigs from assemblies were filtered, merged, 
aligned and post-processed using the Trans-ABySS pipeline (version 1.3.2 - http://www.bcgsc.ca/platform/bioinfo/software 
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/trans-abyss/releases)37. Contigs were aligned against the reference genome using BLAT with the following parameters: 
stepSize=5, repMatch=2253, minScore=0 and minIdentity=0.  Potential fusion candidates were identified as contigs that 
could not be mapped to a single unique location for at least 95% of the sequence. Such contig alignments with the 
following characteristics were considered candidates:  both alignments have percentage of identity of at least 98%, one of 
the alignments does not reside entirely within its partner in terms of genomic coordinates, the alignments do not overlap 
by more than 5% in terms of contig coordinates, the alignments do not overlap in terms of genome coordinates, and the 
total coverage of the two alignments, in terms of contig sequence, is at least 90%.  To further filter the candidate events 
from contig alignments, we use alignment of sequence reads to both contigs and genome.  Reads were aligned to the 
contigs using BWA 0.5.9-r16.  As noted above, reads were aligned to the reference genome with exon-exon junctions 
using BWA 0.5.7, and reads that mapped across exon junctions were repositioned to their original genomic 
positions.  Candidate fusion cases were then filtered by requiring at least 2 reads spanning the contig breakpoint with at 
least 4 flanking base pairs on either side, and at least 4 read pairs flanking the genomic breakpoint and pointing towards 
each other. 
 
PCR primers were designed to flank the gene fusion breakpoints in the ABySS-assembled sequence contigs, and were 
used to amplify cDNA prepared from 100ng of total RNA for each sample with Accuscript High Fidelity reverse 
transcriptase (Agilent) (SuperScript II (Invitrogen/Life) had been used for library construction38). Successful PCR 
amplicons were purified then confirmed by Sanger capillary sequencing. 
 
 
A.6.6. Partial and internal tandem duplications 
 
Partial and internal tandem duplications were reported from the RNA-seq data by Barnacle v0.1.2 (Swanson et al. 
submitted). http://www.bcgsc.ca/platform/bioinfo/software/barnacle). The Barnacle pipeline has five stages.  
1) Examine contig-to-genome alignments and identify anomalous or non-reference (candidate) contigs. These can have a 
variety of alignment topologies. 2) Examine transcriptome read alignments to assembled contig sequences and calculate 
read support for the candidate contigs. 3) Apply user-specified filters to the candidate contigs and retain only sufficiently 
confident candidates. 4) Identify PTDs, ITDs, and fusions from the filtered candidates. 5) Compare the coverage of the 
predicted chimeric transcripts to their corresponding wild-type transcripts. 
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A.6.7. Unsupervised consensus clustering   
 
For mRNA-seq data, we removed genes expressed at or below a noise threshold of RPKM≤0.2 in at least 75% of 
samples, then identified the most-variant 25% of genes (N = 1728) by ranking expressed genes having a median RPKM 
of at least 10 by the coefficient of variation.  
 
For miRNA-seq data, read count data for 187 tumor samples were extracted from Level 3 data archives on the TCGA 
Data Portal website (tcga.cancer.gov/dataportal). The set of isoform.quantification.txt files, which give read counts at base 
pair resolution, was processed to report total read counts for mature and star strands (corresponding to miRBase v13 
MIMAT identifiers), and read counts for each sample were normalized to RPM, i.e. to reads per million reads aligned to 
miRBase mature or star strands. Strands corresponding to miRNAs that had been removed from v18 miRBase 
(miRNA.dead) were eliminated from the data matrix. Mature and star strands were ranked by RPM variance across the 
samples, and the most variant 25% (214 MIMATs) were retained.  
 
For both RNA-seq and miRNA seq data, we generated unsupervised consensus clustering results with NMF v0.5.02 or 
v0.5.0639 in R v2.12.0, with the default Brunet algorithm, and 50 and 200 iterations respectively for the rank survey and 
clustering runs. A preferred cluster result was selected by considering profiles of cophenetic score and average silhouette 
width40of the consensus membership matrix, for clustering solutions having between 3 and 15 clusters (data not shown). 
Silhouette results were generated from the NMF consensus membership matrix using the R ‘cluster’ package v1.14.1. 
Silhouette width profiles were generated by reordering samples to match the sample order in the NMF heatmap, and 
typical vs. atypical members were identified for each unsupervised group using a silhouette width threshold set to a 
fraction (e.g. 0.90) of the maximum width in that group.  
 
Given NMF outputs for mRNA-Seq and miRNA-Seq data, we generated abundance heatmaps from the clustering input 
matrices as follows. We identified the top-ranked 20% of genes and 30% of microRNAs mature and star strands from the 
respective NMF metagene (i.e. W matrix) output files. Removing duplicate names resulted in 980 gene symbols and 106 
miRNAs; we filtered the RNA-seq RPKM matrix and miRNA-seq RPM matrix to retain only records for these genes and 
miRNAs. We reordered columns in each matrix into the NMF output order for each data type. Finally, we used Cluster 
v3.041 (bonsai.hgc.jp/~mdehoon/software/cluster) to log-transform and median-center each row, then to reorder rows 
using hierarchical clustering with an centered correlation distance metric and complete linkage.  
 
P-values for binomial and multinomial tests for association of covariates with cluster assignments, and of clustering 
assignments with each other across data types, were compiled en masse and adjusted using the R function p.adjust(), 
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which implements Benjamini & Hochberg’s sequential multiple comparisons adjustment for p-values.  The significance of 
all 1383 comparisons was adjusted simultaneously, and results that remained significant at an FDR of 0.05 were retained 
for cross-datatype comparison and association. Univariate Kaplan Meier curves and p-values for overall survival were 
calculated with the R ‘survival’ package v2.36-12.  
 
Relationships between sample order for different clustering solutions were visualized using Bezier curve graphics 
generated with a custom Mathematica v8 notebook (Wolfram Research, Champaign IL).  
 
Asymptotic association p-values for covariate contingency tables were calculated using R’s chi-square test. 
 
 
A.6.8. Comparison of RNAseq and Microarray data  

RNAseq gene-level RPKM data for 179 patients was log2 transformed and genes median centered.  Data was filtered for 
genes that were present on at least 80% of samples (20,442 genes filtered to 15,848).  ClaNC, a nearest centroid-based 
classification algorithm, was used to find signatures of each class42. 160 genes per class were selected based on a low 
overall cross validation rate for the NMF 7-class distinction. 178 of the samples were also run on Affymetrix microarrays 
(U133).  Affymextrix data was normalized by MAS5 and the expression value was calculated by mapping the microarray 
probes to genes and taking the maximum value for each gene.  Microarray data was log2 transformed and genes were 
median centered similar to the RNAseq data.  1073 of the 1120 genes were also identified in the microarray data.  For 
visualization, the 178 samples and 1073 genes present on both platforms were used.  In the RNAseq data, genes were 
hierarchically clustered, while maintaining the order of the subtype classes for samples.   Microarray data were visualized 
by maintaining the same gene and sample order as in the RNAseq data (Figure S14). 

 
A.6.9. Group-discriminatory genes and miRNAs   
 
For each unsupervised sample group we identified discriminatory genes for mRNA-seq data, and discriminatory mature 
and star strands for miRNA-seq data, by generating a random forest classifier for samples in that group vs. all other 
samples43, using R v2.15.1 and randomForest v4.6-6. Typically we used 50000 trees, and either mtry=100 or an 
optimized value of mtry, and a Gini variable importance. For each classifier, we profiled the estimated out-of-bag (OOB) 
estimated error as a function of the number of most-important genes or miRNA strands, and reported the smallest set of 
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genes or miRNA strands that minimized or substantially minimized the OOB error. For miRNA-seq data, we note that only 
discriminatory mature and star strands that have substantial absolute abundances are likely to be biologically influential44.  
 
A.6.10. Associations among cytogenetic risk groups, genetic alterations, and mRNA/miRNA clusters   
 
As a TCGA marker paper, the work reported here makes a large number of different genomic data types available to the 
community as a resource for ongoing work, and reports initial analyses. In analyzing the transcriptome sequencing data, 
we used unsupervised consensus clustering to identify groups of samples that had related abundance profiles from RNA-
seq data (178 samples) and miRNA-seq data (187 samples). We then identified statistically significant associations 
between the groups and FAB subtypes, cytogenetic risk groups, and molecular alterations (mutations, fusions, other 
chimeric transcript) (Figure 5). We compared unsupervised groups from RNA-seq data to published microarray data. 
Finally, we identified discriminatory genes and miRs for each unsupervised group, taking all other samples as the second 
group. A gene or miR that helps a classifier distinguish or discriminate a group of samples from all other samples tends to 
have a relatively high or low abundance in samples in that group.  

Work reported in the literature typically took different approaches than the above, for example: a) identifying genes/miRs 
that discriminate specific cytogenetic subtypes, driver gene mutations, or cytogenetic risk categories, e.g. Verhaak et al.45; 
identifying prognostic genes or miRNAs46-49; comparing the abundance levels of tumor and normal cells50,51; integrating 
gene and miRNA abundance to infer potential functional relations52; and comparing different types of leukemia, e.g. AML 
vs. ALL53. 

Given the above, comparing our results with published results is most meaningful for RNA-seq or miRNA-seq-based 
groups that have strong, statistically significant associations with a mutation in a known driver gene or with a cytogenetic 
subtype. There are two such cases in the work reported here: a) RNA-based group 3 and miRNA-based group 5 were 
strongly associated with FAB M3, and PML/RARA fusions; and b) miR-based group 3 was strongly associated with 
NPM1, FLT3 and DNMT3A mutations. These mutations were distributed across four RNA-seq groups (1, 4, 5 and 7). 

In our results (Gene expression analysis), we compare our results to the literature for NPM1 mutations. For miRNA-based 
group 3 and NPM1 mutations, we have added text (see above) that indicates that, beyond miR-10a, miR-242, miR-196b, 
miR-130a and let-7b were also discriminatory (Fig S15j), consistent with (Bryant)50,52,54.  

In the work reported here, NPM1 mutations were statistically associated with RNA-seq group 4, but were also present in 
groups 1, 5 and 7. NPM1 mutations have been reported as associated with a discriminative HOX and TALE gene 
expression signature55, and three HOX genes and PBX3 have been associated with overall survival (Li Blood 2012). 
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Possibly because NPM1 mutations were distributed across four RNA-seq groups, no HOX, PBX, MEIS or PREP gene56 
was discriminatory for any RNA-seq group. 

Li et al.46 reported a prognostic 24-gene signature (ALS2CR8, ANGEL1, ARL6IP5, BSPRY, BTBD3, C1RL, CPT1A, 
DAPK1, ETFB, FGFR1, HEATR6, LAPTM4B, MAP7, NDFIP1, PBX3, PLA2G4A, PLOD3, PTP4A3, SLC25A12, SLC2A5, 
TMEM159, TRIM44, TRPS1, and VAV3) from a meta-analysis of six independent AML datasets. The current work did not 
assess prognostic genes, and none of the 24 genes was discriminatory for an RNA-seq group, though two SLC25A family 
genes and an SLC2A family member were discriminatory for group 2, and this group was statistically associated with 
TP53 mutations. 

Of other overlaps with the literature that suggest that the data made available with this manuscript will be a valuable 
resource for ongoing work, we note two. 

CD34 and BAALC were relatively abundant in RNA-seq group 6 (Figure S16f). Consistent with Rockova et al.48 and 
Mendler et al.57, this group was statistically associated with RUNX1 mutations, was free of NPM1 mutations (Figure 5), 
and had relatively unfavorable overall survival (Figure S13). 

The mature strand of the prognostic miR-181a58 was a relatively weak (11th) discriminator for miR groups 4 (weakly 
statistically associated with PICALM-MLLT10 fusions) and 2. miR group 2 is statistically associated with TP53 mutations, 
and Seoudi et al.59 noted that TP53 may regulate miR-181a. 

 
A.7. Methylation array and analysis 
 
A.7.1. Bisulfite Conversion 
 
DNA samples (1 µg) were bisulfite converted using the Zymo Research EZ96 DNA methylation kit (Zymo Research, 
Irvine, CA, USA) as described by the manufacturer. We determined the completeness of bisulfite conversion and the 
amount of bisulfite-converted DNA for each sample using a panel of four MethyLight-based quality control (QC) reactions 
as described previously60. All samples passed these QC tests and subsequently were entered into the Illumina Infinium 
DNA methylation data production pipeline. 
 
A.7.2. Illumina Infinium DNA methylation profiling 
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The Illumina Infinium 450k DNA methylation assay (HumanMethylation450) was performed for all 192 samples according 
to the experimental protocol outlined by the manufacturer (Illumina, San Diego, CA, USA). The assay interrogates the 
DNA methylation status of 482,421 CpG dinucleotides in the promoter and gene body regions of all human RefSeq genes, 
along with numerous intergenic regions. The DNA methylation score for each locus is presented as a beta value (beta = 
(M/(M+U)) in which M and U indicate the mean methylated and unmethylated signal intensities for each locus. Beta 
values range from zero to one, with scores of zero indicating low levels of DNA methylation and scores of one indicating 
high levels of DNA methylation. A detection P-value also accompanies each data point and compares the signal intensity 
difference between the analytical probes and a set of negative control probes on the array. Any data point with a 
corresponding P-value greater than 0.05 is deemed not to be statistically significantly different from background and is 
thus masked as “NA” in TCGA level 3 data packages. Genomic locations for each probe are available from Illumina 
(www.illumina.com). 
 
A.7.3. TCGA Data Packages 
 
DNA methylation data packages were generated using the ‘EGC.tools’ R package (version 1.3.0) after processing raw 
IDAT files  (available as Level 1 data packages) for each sample with the ‘methylumi’ R package (version 2.3.22).  
Background correction and adjustment to equalize the red/green dye bias across samples was then performed, 
generating the processed signal intensities available as TCGA Level 2 data packages.  Additionally, for downstream 
analysis, repeat regions (via RepeatMasker) and common SNPs (MAF > 0.01, per dbSNP build 135 via the UCSC 
snp135common track) expected to substantially interfere with probe specificity were identified, and measurements from 
the affected probes were masked as “NA”.  Loci on chromosomes X and Y were also masked, after verifying the clinically 
annotated gender via probes on chromosome X, to avoid confounding by sex. 
 
A.7.4. Unsupervised analysis 
 
The observed/expected ratio for CpG dinucleotides at each locus was computed for a 3000-bp window, centered on the 
interrogated locus, for each probe on the HumanMethylation450 platform.  The hg19 reference sequence for each window 
was extracted from the ‘BSgenome.Hsapiens.UCSC.hg19’ Bioconductor package61, and the observed proportion of CG 
dinucleotides as a fraction of the total was computed.  The expected proportion of CG dinucleotides as a fraction of the 
total is Pr𝐶Pr⁡(𝐺)2, where Pr(C) is the fraction of cytosine bases in the window, Pr(G) is the fraction of guanine bases in 
the window, and CG is assumed to be equally likely to GC in calculating the expectation.  The window size was chosen 
after Saxonov et al.62, who distinguished two different classes of gene promoters in the human genome based on their 
CpG content via this metric.  
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Approximately 5% of the loci on the HumanMethylation450 platform (exclusive of SNPs, repeat regions, and sex 
chromosomes) have an observed-to-expected CpG ratio of 0.316 or lower.  Approximately 5% of the loci on the platform 
have an observed-to-expected CpG ratio of 1.57 or higher.  When replicate samples from a separate experiment were 
added, we observed stable and consistent clustering using these cutoffs to define the extremes of CpG density.  We 
chose the 1000 most variable loci from the highest density 5% and the lowest density 5% of loci, and performed 
hierarchical clustering separately for each group of probes, using Ward’s method for linkage and a Euclidean distance 
metric.  Cluster assignments, for comparison with miRNA and mRNA expression cluster assignments, were generated by 
cutting the resulting dendrogram at progressively greater heights and assessing cluster stability across 1000 bootstrap 
iterations. For high-CpG clusters, which were relatively unstable, we cut the dendrogram to produce a 7-cluster solution.  
For low-CpG clusters, we found the 9-cluster solution to produce stable associations, and observed rough 
correspondence to the same patterns in when clustering at a subset of 4000 randomly designed probes included on the 
HumanMethylation450 assay by the manufacturer, suggesting that the low-CpG clusters are in fact more representative of 
changes to the genome as a whole among the patients in the study. 
 
We performed Fisher’s exact test to quantify associations between recurrent abnormalities and clustering assignments 
across microRNA, mRNA, high-CpG methylation, and low-CpG methylation results, adjusting p-values by the Benjamini-
Hochberg procedure63,retaining those with adjusted p-values less than 0.05 for annotation purposes (Supplementary 
Tables 14-16). 
 
A.7.5. Supervised analyses 
 
Marginal tests for significant differences in DNA methylation between mutant and wild-type patients were conducted 
separately for recurrent fusions and mutations, on logit-transformed and untransformed beta values (β = (M/(M+U), as 
previously). Additionally, we tabulated differences between AML patient blasts and CD34+ cells from healthy donors, as 
well as differences between AML patient blasts and committed myeloid cells (promyelocytes, neutrophils, and monocytes) 
from donors. Student’s t test was applied row-wise across all loci remaining after masking (previously described).  The 
resulting p-values were corrected using the Benjamini-Hochberg procedure. The subset of loci that exhibited statistically 
significant absolute differences in mean methylation greater than 10% were enumerated for each contrast.  We then 
tabulated contiguous regions of greater than 1000 bases with significant (FDR < 0.1) changes in DNA methylation among 
those enumerated, to identify and annotate differentially methylated regions for each contrast. 
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A.8 Batch effects analysis 
 
We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch effects in the AML data sets. 
Three different data sets were analyzed: mRNA expression (RNA-seq Illumina GA), miRNA expression (RNA-seq Illumina 
GA), and DNA methylation (Illumina Infinium HumanMethylation450 microarray). All of the data sets were at TCGA level 
3, since that is the level at which most of the analyses in the paper are based. We assessed batch effects with respect to 
the variable plate ID, which contained the identification number of the plate on which the samples were shipped to the 
processing centers.  
 
For hierarchical clustering, we used the average linkage algorithm with 1 minus the Pearson correlation coefficient as the 
dissimilarity measure. We clustered the samples and then annotated them with colored bars shown at the bottom. Each 
color corresponded to a plate ID. For PCA, we plotted the first four principal components, but only plots of the first two 
components are shown in the Supplementary Figures. To make it easier to assess batch effects, we enhanced the 
traditional PCA plot with centroids. Points representing samples with the same plate ID were connected to the batch 
centroid by lines. The centroids were computed by taking the mean across all samples in the batch. That procedure 
produced a visual representation of the relationships among batch centroids in relation to the scatter within batches. The 
results for the three data sets follow: 
 
A.8.1 mRNA (RNA-seq Illumina GA) 
 
Figure S19 shows clustering and PCA plots for the RNA-seq platform. Genes with zero values were removed and the 
RPKM values were log2-transformed before generating the figures. None of the batches were distinct from the others, 
indicating that no serious batch effects were present. 
 
A.8.2 miRNA Expression (miRNA-seq Illumina GA) 
 
Figure S20 shows clustering and PCA plots for miRNA-seq data. Genes with zero values were removed and the read 
counts were log2-transformed before generating the figure. While hierarchical clustering did show a small cluster of 
samples belonging to plate 0740, the cluster was not distinct in PCA plots. We therefore did not perform a batch effects 
correction. None of the other batches were outliers. 
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A.8.3 DNA Methylation (Illumina Infinium HumanMethylation27 and HumanMethylation450 arrays) 
 
Figure S21 shows clustering and PCA plots for the Infinium DNA methylation platform. None of the batches were distinct 
from the others, indicating that no serious batch effects were present. 
 
A.8.4 Batch Effects Conclusions 
 
Overall, the TCGA AML data sets contained no major batch effects by clustering or PCA plots. In the miRNA expression 
data, a small cluster of samples from the same plate ID was observed in the hierarchical clustering plot, but not in the 
PCA plots. This did not warrant a batch effects correction, since the correction algorithms run the risk of removing 
important biological variation (as well as technical variation). We concluded that technical batch effects in the data sets 
are reasonably small and unlikely to influence high-level analyses in an important way. 
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B. Supplementary Figures 



Event-free (a) and Overall (b) Survival in the cohort, stratified by cytogenetic risk.

Figure S1. Survival by Cytogenetic Risk Group
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Figure S3: Variant frequency and mutation spectrum 
a) Top panel: Variant density for all mutations validated with WGS (n=50, green) or exome sequencing (n=150, 
purple). Bottom panel: sequencing coverage for all variants. Note that few mutations with VAFs below 10% were 
validated. b) Mutational spectrum for all validated tier 1 mutations from all cases.
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Figure S4. Allelic Expression Bias
Comparing variant allele frequencies between DNA and RNA reveals allelic
bias in the expression of mutations in some putative tumor suppressor
genes. Only SNVs are represented in the analysis. Copy number events and
loss of heterozygosity explain some, but not all of this enrichment for 
expression of the mutant allele. Only mutations with at least 10x coverage
in the RNA sequencing are shown. Only 2/12 WT1 mutations are represented
here, because most of the mutations were indels and did not yield accurate
DNA readcounts; some of the SNVs also did not have adequate coverage by
RNA-Seq.  All six PHF6 mutations occurred in male patients; since the PHF6 
gene is on the X chromosome, all mutations in this gene are therefore 
hemizygous. Only 2 of the 6 mutations had adequate readcounts for the 
analysis; the others may have been affected by nonsense-medicated decay.
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Figure S5. MIR142 mutations and expression
a) The secondary structure of MIR142, with the 5' product labelled in blue, the 3' product in red, and the 
seed regions in green. The locations of mutations are designated. Asterisks denote the number of mutations 
detected at each position. b) Expression levels (expressed as FKPM) of MIR142 derived from miRNA 
sequencing data. c) The variant allele frequencies of MIR142 mutations in the tumor data are shown for 
each affected case. The variant allele was expressed in all cases where mutations were detected.



Figure S6. Germline truncating variants in AML patients
a) Distribution of truncating germline variants in all genes. b) No relationship between age at AML
diagnosis and burden of germline truncating variants (linear regression in green; 95% confidence
intervals in blue). c) Frequency of germline truncating variants in genes that have recurrent
somatic mutations in AML



Figure S7. Mutual exclusivity in cohesin complex mutations
A mutation matrix of cohesin complex genes. 26 samples (13%) have at least
one mutation in this set of genes. Blue and orange boxes indicate exclusive and
co-occurring mutations in a sample, respectively.
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Figure S8. Co-occuring and mutually exclusive mutations in genes/groups
Nodes represent genes, gene groups, or cytogenetic risk groups. Blue edges connect nodes that co-
occur in a significant number of samples. Red edges connect nodes that are mutually exclusive. Black 
edges indicate mutations that define favorable cytogenetics. The thickness of each edge corresponds 
to the strength of the association. Supplementary Table 19 gives the corresponding p-values 
(uncorrected) for each association.
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Supplementary Figure 7
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Figure S9. Mutations in kinases, RAS proteins, and phosphatases 
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A mutation matrix of protein kinases, phosphatase, and RAS proteins. The categories include tyrosine kinases
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(green), serine/threonine kinases (yellow), Ras proteins (blue), and protein tyrosine phosphatases (red). In total, 

cmiller


cmiller
118/200 (59%) of samples have a mutation in these genes, with FLT3 mutations accounting for 56 of these
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samples. Blue boxes indicate mutations appear in only one of the listed samples, while orange boxes indicate 
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mutations that co-occur within one of the listed samples.
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Figure S10. Mutual exclusivity between genes
Computational analysis using the Dendrix++ algorithm identifies the strongest mutually-exclusive sets of 
genes, with P < 0.001, P < 0.021, and P < 0.103 for groups A, B, and C, respectively. Blue boxes indicate 
mutations that are exclusive across all listed genes and samples; orange boxes indicate co-occurring 
mutations.



a b c

a) A mutation matrix of spliceosome genes. The coverage of the gene set is 25 samples (12.5%). Blue and
orange boxes indicate exclusive and co-occurring mutations in the sample, respectively. b) A mutation matrix
of other chromatin modifiers. 29 samples (14.5%) have at least one mutation in this set of genes. c) A
mutation matrix for myeloid transcription factors. Blue and orange boxes indicate exclusive and co-occurring
mutations in a sample, respectively.

Figure S11. Mutation Matrices of spliceosome and chromatin modifier genes



a) From the NMF clustering rank survey, profiles of cophenetic correlation coefficient and of average silhouette width of the consensus 
memberships matrix. Grey triangles show the four- and seven-group solutions suggested by these two metrics. b) Consensus membership 
heatmaps with silhouette width profiles. c) Connectivity for individual groups from the seven-group solution (left) into the four-group solution 
(right). Bezier curves link a sample’s positions in the two clustering results, and are drawn using colours for the seven-group solution. Samples 
with relatively low silhouette widths can be considered as ‘atypical’ group members. Text under each graphic summarizes the dominant 
connectivity relationship(s).

Figure S12. RNA-seq clustering Relationship between four- and seven-group clustering solutions for RNA-seq.



Figure S13. Univariate Kaplan Meier results for overall survival for unsupervised groups.
a) mRNA-seq, b) miRNA-seq. For each data type, top to bottom: 1) consensus membership 
heatmaps, with a scale bar showing consensus membership values; 2) atypical members of each 
group are those with relatively low silhouette widths (black, for width thresholds of f=0.95 and 
0.90); 3) a silhouette width profile calculated from the consensus membership matrix; 4) summary 
tables showing the number of samples and the average silhouette width for each group, and for all 
samples; 5) univariate Kaplan-Meier plots with log-rank p-values.



FIgure S14. Comparison between RNA-seq and microarray clustering
Expression-based clusters identified in RNAseq were used to compare expression in matched microarray 
data. Genes predictive of the seven RNAseq clusters were used to cluster the microarray data, 
identifying similar patterns in the microarray data. In the RNAseq data, genes were hierarchically 
clustered, while maintaining the order of the subtype classes for samples from NMF clustering. 
Microarray data were visualized by maintaining the same gene and sample order as in the RNAseq data



Figure S15. Relationships between unsupervised groups for RNA-seq, miRNA-seq and DNA methylation data. 
(next 5 pages)
Curved lines map the sample order from the left clustering result into the sample order in the right clustering result.
Silhouette width profiles are as in Fig. 4. a) Seven RNA-seq groups vs. five miRNA-seq groups. b,c) Seven RNA-seq groups
vs. b) nine DNA methylation groups for sparse-CpG regions, and vs. c) seven DNA methylation groups for dense- CpG
regions. d,e) As b,c), but for the five miRNA-seq groups in a). Text under each graphic summarizes the statistically
significant connectivity relationship(s).
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Figure S16. Discriminatory genes and miRNAs for unsupervised groups. 
(next 12 pages)
a-g) Seven RNA-seq groups. h-l) Five miRNA-seq groups. Discriminatory genes and miRNAs were identified by random forest
classifiers, using RPKM for RNA-seq data and RPM for miRNA-seq mature/star strand data (see Supplementary Methods). A gene or
miR that helps a classifier separate or discriminate a group of samples from all other samples tends to have a higher or lower
abundance in samples in that group. See, for example, the box- whisker plots for MPO and CALR for RNA-seq group 3, in which each
gene’s RPKM distribution in group 3 is highlighted by a red rectangle. For each sample group, panels show (left to right, top to
bottom): 1) The importances of genes or miRs in a classifier are correlated to Kruskal-Wallis P-values for genes or miRs being
differentially abundant; 2) Profile of the estimated classifier error rate as a function of the number of most important 20 genes or 40
miRs; 3) Table of discriminatory genes or miRs, ranked by importance (Gini), with variables to the right of the minimum of the
minimum error rate in the profile in (2) shown in gray; 4) Box-whisker plots of abundance across the groups for a subset of highly-
ranked genes or miRs; 5) Estimated overall error rate, and table of the number of correctly and incorrectly classified samples (i.e.
confusion matrix) for subset of genes or miRs to the left of the minimum error in (2).



50k trees, mtry=100

8
0.0615

17
0.0559

Random forest: classification
Number of trees: 50000
Vars tried at each split: 1
Top 17 genes
OOB est of  error rate: 5.59%
Confusion matrix:
    0 1 class.error
0 164 0   0.00
1  10 5   0.67

Top 8 genes
OOB est of  error rate: 6.15%
Confusion matrix:
    0 1 class.error
0 163 1 0.0061
1  10 5 0.67

a) RNA-seq: group 1 of 7

STAT1
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4

42613 57
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n Symbol Entrez MD Acc MD Gini
STAT1 6772 4.58 0.50
NPEPL1 79716 4.54 0.39
TMEM205 374882 3.89 0.34
PIK3IP1 113791 4.84 0.33

5 SFXN3 81855 2.33 0.30
TP53I3 9540 3.40 0.26
PFKP 5214 2.16 0.26
TTC38 55020 1.93 0.26
CCS 9973 2.22 0.24

10 SMAP2 64744 3.36 0.23
FAM116B 414918 2.72 0.23
ARHGDIA 396 2.82 0.22
NME3 4832 2.41 0.21
CD97 976 2.01 0.21

15 C12orf35 55196 3.02 0.18
SNORD38A 94162 2.13 0.18
ERMAP 114625 2.04 0.18
VIM 7431 1.91 0.17
SPNS3 201305 1.89 0.16

20 CD163 9332 2.46 0.15



b) RNA-seq: group 2 of 7

50k trees, mtry=100

6
0.0223

Random forest: classification
Number of trees: 50000
Vars tried at each split: 1
Top 6 genes
OOB est of  error rate: 2.23%
Confusion matrix:
    0  1 class.error
0 156  2  0.013
1   2 19  0.095

n Symbol Entrez MD Acc MD Gini
HBB 3043 8.73 2.32
ALAS2 212 8.21 2.10
SLC2A1 6513 7.27 1.72
HBA1 3039 7.08 1.49
HBD 3045 6.68 1.41

6 HMBS 3145 6.61 1.38
HBA2 3040 6.84 1.34
SLC25A39 51629 6.24 1.15
BCL2L1 598 5.74 1.05

10 SLC4A1 6521 5.48 1.01
ERMAP 114625 5.08 0.87
AHSP 51327 4.87 0.81
RBM38 55544 4.58 0.72
MARCH8 220972 4.25 0.60

15 BPGM 669 4.66 0.60
KLF1 10661 4.09 0.50
BLVRB 645 3.84 0.48
HBM 3042 4.33 0.48
SLC25A37 51312 3.81 0.48

20 RHAG 6005 3.28 0.46

HBB
ALAS2

SLC2A1

42613 57
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50k trees, mtry=100

4
0.0168

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 4 genes
OOB est error rate: 1.68%
Confusion matrix:
    0  1 class.error
0 160  1  0.0062
1   2 16  0.11

n Symbol Entrez MD Acc MD Gini
MPO 4353 7.26 1.48
CALR 811 6.24 1.21
ARHGAP4 393 5.92 1.19

4 HGF 3082 5.60 1.07
SERPING1 710 6.05 1.04
CST7 8530 5.42 0.96
SLC39A11 201266 5.29 0.95
CLEC2B 9976 5.03 0.88
FNDC3B 64778 4.64 0.68

10 PRDX4 10549 4.45 0.63
NT5DC2 64943 4.12 0.63
LGALS9 3965 4.07 0.58
VNN1 8876 4.26 0.58
NTNG2 84628 3.70 0.48

15 SOD2 6648 4.12 0.47
LPO 4025 3.75 0.47
TTYH3 80727 3.80 0.46
PPIB 5479 3.71 0.46
STAB1 23166 3.66 0.45

20 SKAP2 8935 3.88 0.45

MPO
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50k trees, mtry=100

11
0.0615

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 11 genes
OOB est error rate: 6.15%
Confusion matrix:
    0  1 class.error
0 137  5  0.035
1   6 31  0.16

n Gene symbol Entrez MD Acc MD Gini
1 FCGRT 2217 7.77 2.20

MAST3 23031 6.72 1.55
HLA-B 3106 5.07 1.18
CECR1 51816 5.08 1.10

5 HLA-DQA1 3117 6.77 1.08
ATP6V0D1 9114 5.07 1.01
HLA-DQB1 3119 5.38 0.75
TSPAN14 81619 4.13 0.71
GRN 2896 4.04 0.65

10 SNORA32 692063 4.24 0.61
11 SNORD5 692072 4.96 0.60

NID1 4811 3.66 0.59
CDKN2D 1032 3.79 0.54
LGALS3 3958 3.50 0.51

15 CCDC104 112942 3.52 0.50
RASSF4 83937 3.54 0.49
RNH1 6050 3.44 0.47
HVCN1 84329 3.50 0.47
SEPP1 6414 3.67 0.46

20 IL10RA 3587 3.50 0.45
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50k trees, mtry=100

22
0.0447

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 11 genes
OOB est error rate: 4.47%
Confusion matrix:
    0  1 class.error
0 145  1 0.0068
1   7 26 0.21

n Symbol Entrez MD Acc MD Gini
LRP1 4035 6.54 1.75
S100A9 6280 6.52 1.52
KCTD12 115207 5.44 1.33
SLC7A7 9056 5.47 1.27

5 S100A8 6279 6.13 1.24
CTSS 1520 4.86 1.10
IGSF6 10261 4.92 1.10
P2RY13 53829 4.98 1.02
VCAN 1462 5.20 1.00

10 TLR1 7096 5.27 0.99
CLEC7A 64581 4.45 0.92
MEGF9 1955 4.46 0.86
PSAP 5660 4.11 0.80
SIGLEC9 27180 4.21 0.77

15 CYBB 1536 4.20 0.74
CD14 929 4.03 0.72
OSBPL11 114885 3.99 0.71
PLBD1 79887 5.66 0.69
CPPED1 55313 3.91 0.59

20 TLR8 51311 3.58 0.56
OGFRL1 79627 4.06 0.56

22 NAGA 4668 3.51 0.54
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50k trees, mtry=100

7
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3
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RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 7 genes
OOB est err rate: 8.38%
Confusion matrix:
    0  1 class.error
0 139  5  0.035
1  10 25  0.29

n Symbol Entrez MD Acc MD Gini
CIITA 4261 8.27 2.27
HLA-DOA 3111 7.84 2.13

3 CD34 947 6.21 1.41
HLA-DPB1 3115 6.14 1.16
HLA-DMA 3108 6.02 1.13
HLA-DQA1 3117 5.12 0.86

7 BAALC 79870 4.34 0.77
HLA-DPA1 3113 4.70 0.69
PLEKHG2 64857 3.89 0.64

10 FLNB 2317 4.04 0.62
NPR3 4883 3.76 0.62
JUP 3728 4.30 0.62
MOSC1 64757 3.99 0.61
FAM69B 138311 3.75 0.58

15 C5orf23 79614 3.47 0.54
UBA7 7318 3.96 0.50
HLA-DRA 3122 4.03 0.50
HLA-DMB 3109 4.07 0.49
DNTT 1791 4.75 0.48

20 SLC37A1 54020 3.32 0.46

...

CIITA

CD34BAALC
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f) RNA-seq: group 6 of 7
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42613 57

50k trees, mtry=100

5
0.0391

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 5 genes
OOB est err rate: 3.91%
Confusion matrix:
    0  1 class.error
0 157  2  0.013
1   5 15  0.25

n Symbol Entrez MD Acc MD Gini
AK2 204 6.71 1.24
FAM107B 83641 5.89 1.03
MRPL33 9553 4.98 0.74
TRAF5 7188 5.37 0.71

5 SRGN 5552 4.36 0.57
RNASE2 6036 4.20 0.54
LYZ 4069 4.71 0.54
PTPRCAP 5790 3.97 0.53
JUP 3728 4.24 0.51

10 ATG3 64422 4.41 0.46
TNFSF13B 10673 4.21 0.42
CDC42EP3 10602 3.47 0.38
SERPINB10 5273 3.91 0.37
DNASE2 1777 3.76 0.36

15 FUT4 2526 3.28 0.35
CCL23 6368 3.21 0.34
TP53INP2 58476 3.20 0.34
SERPINB8 5271 3.06 0.32
DEFB1 1672 3.42 0.31

20 PGAM1 5223 2.77 0.30
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50k trees, mtry=214

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 2 MIMATS
OOB est err: 2.67%
Confusion matrix:
    0  1 class.err
0 172  1 0.0058
1   4 10 0.29

grp nbr
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miR-21

miR-21*
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h) miRNA-seq: group 1 of 5

1 2
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n mir MIMAT MD Acc MD Gini
1 miR-21 MIMAT0000076 151.12 13.61

miR-21 MIMAT0004494 22.45 1.23
miR-181a-2* MIMAT0004558 21.44 0.97
miR-92a MIMAT0000092 15.17 0.72

5 miR-103 MIMAT0000101 23.38 0.60
miR-22 MIMAT0000077 4.15 0.58
miR-20a MIMAT0004493 12.33 0.56
miR-142 MIMAT0000433 1.55 0.54
miR-148b MIMAT0000759 -5.53 0.43

10 miR-589 MIMAT0004799 5.54 0.34
miR-326 MIMAT0000756 6.72 0.28
miR-125b MIMAT0000423 0.23 0.25
miR-32 MIMAT0000090 5.30 0.23
miR-27a MIMAT0000084 -3.57 0.22

15 miR-335 MIMAT0000765 -4.49 0.20
miR-16-2 MIMAT0004518 4.98 0.13
miR-19b MIMAT0000074 2.32 0.12
miR-17 MIMAT0000070 4.36 0.11
miR-374b MIMAT0004955 4.52 0.11

20 miR-146b MIMAT0004766 9.36 0.10
miR-125a MIMAT0000443 4.39 0.10
miR-625 MIMAT0004808 4.33 0.10
miR-100 MIMAT0000098 3.17 0.10
miR-30d MIMAT0000245 -1.70 0.09

25 miR-154 MIMAT0000452 4.50 0.08
miR-199b MIMAT0004563 1.75 0.08
miR-199a MIMAT0000232 2.49 0.08
miR-500 MIMAT0002871 -1.09 0.08
miR-99b MIMAT0000689 5.13 0.07

30 miR-183 MIMAT0000261 -0.86 0.07
miR-181c MIMAT0000258 5.86 0.07
miR-25 MIMAT0000081 -0.08 0.07
miR-27b MIMAT0000419 -4.50 0.07
miR-455 MIMAT0004784 4.11 0.07

35 miR-181d MIMAT0002821 5.08 0.06
miR-181a-1* MIMAT0000270 6.24 0.06
let-7g MIMAT0004584 -3.87 0.06
miR-181b MIMAT0000257 6.76 0.05
miR-92b MIMAT0003218 5.90 0.05

40 let-7e MIMAT0000066 3.10 0.05



50k trees, mtry=200

13 
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8
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4
0.112

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 13 MIMATS
OOB est err: 6.95%
Confusion matrix:
    0  1 class.err
0 144  3  0.020
1  10 30  0.25
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i) miRNA-seq: group 2 of 5
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n miR MIMAT MD Acc MD Gini
1 miR-148a MIMAT0000243 11.44 4.25

miR-199a MIMAT0000231 7.26 3.07
miR-20b MIMAT0001413 7.89 2.74
miR-92a MIMAT0000092 10.79 2.64

5 miR-30a MIMAT0000088 8.74 2.17
miR-9 MIMAT0000441 10.09 2.10
miR-181b MIMAT0000257 8.05 1.79
miR-532 MIMAT0004780 4.93 1.25
miR-30a MIMAT0000087 6.28 1.21

10 miR-185 MIMAT0000455 5.93 1.18
miR-181a MIMAT0000256 5.91 1.12
miR-181a-1* MIMAT0000270 5.10 1.10
miR-20a MIMAT0004493 6.77 1.05
miR-363 MIMAT0000707 4.58 1.05

15 miR-106a MIMAT0000103 6.08 0.96
miR-486 MIMAT0002177 3.53 0.95
miR-192 MIMAT0000222 4.83 0.88
miR-500 MIMAT0002871 3.79 0.84
miR-182 MIMAT0000259 3.29 0.77

20 miR-425 MIMAT0001343 4.25 0.77
miR-874 MIMAT0004911 4.11 0.75
miR-20a MIMAT0000075 5.54 0.75
miR-183 MIMAT0000261 3.94 0.74
miR-532 MIMAT0002888 3.07 0.73

25 miR-551b MIMAT0003233 3.40 0.64
miR-17 MIMAT0000071 4.85 0.63
miR-151 MIMAT0000757 3.72 0.60
miR-144 MIMAT0004600 2.85 0.59
miR-10a MIMAT0000253 4.63 0.56

30 miR-194 MIMAT0000460 3.98 0.53
miR-339 MIMAT0000764 3.37 0.50
miR-10b MIMAT0000254 3.29 0.49
miR-628 MIMAT0004809 4.18 0.48
miR-92a-1 MIMAT0004507 3.09 0.43

35 miR-493 MIMAT0002813 3.13 0.41
miR-455 MIMAT0004784 2.61 0.41
miR-503 MIMAT0002874 3.28 0.39
miR-191 MIMAT0000440 2.45 0.37
miR-17 MIMAT0000070 3.45 0.37

40 miR-128 MIMAT0000424 2.66 0.36



50k trees, mtry=128
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0 137
1 50

miR-10a

miR-424

j) miRNA-seq: group 3 of 5

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 2 MIMATS
OOB est error rate: 4.81%
Confusion matrix:
    0  1 class.err
0 132  5  0.037
1   4 46  0.080
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n mir MIMAT MD Acc MD Gini
1 miR-10a MIMAT0000253 25.4223 45.4778

miR-424 MIMAT0001341 6.5771 4.8106
miR-193a MIMAT0004614 7.3993 1.9423
miR-542 MIMAT0003389 3.8524 1.7167

5 miR-196b MIMAT0001080 5.8071 1.3714
miR-331 MIMAT0000760 4.081 1.0211
miR-21 MIMAT0000076 7.5922 1.0071
let-7b MIMAT0000063 2.919 0.922
miR-181a-2* MIMAT0004558 2.737 0.815

10 miR-503 MIMAT0002874 2.4028 0.4676
miR-181c MIMAT0004559 1.8267 0.4336
miR-23b MIMAT0000418 4.5886 0.4302
let-7b MIMAT0004482 1.6873 0.3893
miR-103 MIMAT0000101 3.2674 0.3828

15 miR-107 MIMAT0000104 1.8236 0.335
miR-100 MIMAT0000098 -1.0579 0.2594
miR-32 MIMAT0000090 2.7866 0.2406
miR-199b MIMAT0004563 0.5418 0.2395
let-7d MIMAT0000065 3.4617 0.2311

20 let-7g MIMAT0004584 -2.3083 0.2274
miR-199a MIMAT0000232 0.5265 0.2247
miR-7-1 MIMAT0004553 -0.0043 0.2088
miR-374b MIMAT0004955 -1.0926 0.2053
miR-142 MIMAT0000434 0.9631 0.1912

25 let-7a MIMAT0004481 2.0138 0.1665
miR-335 MIMAT0004703 1.2061 0.1586
miR-106b MIMAT0000680 -0.8357 0.144
miR-625 MIMAT0004808 1.1086 0.1348
miR-577 MIMAT0003242 1.9945 0.1348

30 miR-130a MIMAT0000425 2.628 0.1327
miR-30a MIMAT0000087 2.7265 0.1317
miR-133a MIMAT0000427 1.4797 0.1308
miR-664 MIMAT0005949 0.3344 0.1302
miR-139 MIMAT0000250 4.0262 0.1299

35 miR-379 MIMAT0000733 2.3074 0.1287
miR-148b MIMAT0000759 0.8831 0.1239
miR-30d MIMAT0000245 1.8049 0.1191
miR-145 MIMAT0000437 3.2158 0.1182
miR-29-2 MIMAT0004515 -1.8803 0.1112

40 miR-98 MIMAT0000096 1.7731 0.1111



46
0.0963

25
0.1123

5
0.139

n miRNA MIMAT MD Acc MD Gini
miR-30d MIMAT0000245 12.58 8.84
miR-30b MIMAT0000420 9.83 4.84
miR-221 MIMAT0000278 9.27 4.75
miR-126 MIMAT0000445 11.18 4.38

5 miR-222 MIMAT0000279 7.76 3.61
miR-130a MIMAT0000425 8.85 3.19
miR-181c MIMAT0004559 7.97 2.86
miR-126 MIMAT0000444 10.26 2.68
miR-128 MIMAT0000424 8.24 1.61

10 miR-181c MIMAT0000258 6.67 1.57
miR-30e MIMAT0000692 4.84 1.41
miR-181d MIMAT0002821 5.80 1.17
miR-181a-2* MIMAT0004558 4.86 1.16
miR-181a MIMAT0000256 5.69 1.08
miR-505 MIMAT0002876 6.17 1.02
miR-335 MIMAT0004703 6.14 0.92
miR-10a MIMAT0000253 6.06 0.89
miR-148a MIMAT0000243 5.70 0.88
let-7b MIMAT0000063 4.91 0.83

20 miR-766 MIMAT0003888 5.17 0.80
miR-181b MIMAT0000257 4.54 0.78
miR-374b MIMAT0004955 4.88 0.76
miR-181a-1* MIMAT0000270 4.63 0.71
miR-331 MIMAT0000760 3.40 0.70

25 miR-142 MIMAT0000434 2.98 0.63
miR-337 MIMAT0000754 4.20 0.61
let-7a MIMAT0000062 2.92 0.54
miR-539 MIMAT0003163 4.50 0.53
miR-376c MIMAT0000720 3.75 0.51

30 miR-9 MIMAT0000441 3.94 0.50
miR-146a MIMAT0000449 4.13 0.49
miR-100 MIMAT0000098 3.77 0.48
miR-98 MIMAT0000096 4.55 0.47
miR-625 MIMAT0004808 3.53 0.47

35 miR-99b MIMAT0000689 4.21 0.46
miR-654 MIMAT0004814 3.49 0.44
miR-335 MIMAT0000765 2.70 0.44
miR-584 MIMAT0003249 3.93 0.43
miR-532 MIMAT0002888 1.58 0.43

40 miR-361 MIMAT0000703 4.12 0.42
miR-93 MIMAT0000093 2.90 0.39
miR-409 MIMAT0001639 3.61 0.39
let-7a-2 MIMAT0010195 3.40 0.39
let-7d MIMAT0000065 3.44 0.39

45 miR-20b MIMAT0001413 3.35 0.38
miR-363 MIMAT0000707 3.52 0.38

Number of trees: 50000
Vars at each split: 1
Top 46 MIMATs
OOB est error rate: 10.16%
Confusion matrix:
    0  1 class.error
0 115  7  0.057
1  12 53  0.19

Top 25
OOB est error rate: 11.76%
Confusion matrix:
    0  1 class.error
0 114  8  0.066
1  14 51  0.22

Top 5
OOB est error rate: 13.9%
Confusion matrix:
    0  1 class.error
0 111 11  0.090
1  15 50  0.23

50k trees, mtry=100
miR-30d

miR-30b
miR-221

miR-126

miR-222

k) miRNA-seq: group 4 of 5

4

12 3 5 4

1 2

3

5



3
0.0

RF: classification
Number of trees: 50000
Vars tried each split: 1
Top 3 MIMATS
OOB est error rate: 0%
    0  1 class.err
0 169  0        0
1   0 18        0

miR-100
let-7a-2

miR-452

50k trees, mtry=100

l) miRNA-seq: group 5 of 5
12 3 5 4

1 2

3

5

4

n mir MIMAT MD Acc MD Gini
1 miR-100 MIMAT0000098 15.59 10.49

let-7a-2 MIMAT0010195 15.32 9.41
miR-452 MIMAT0001635 8.00 2.92
miR-224 MIMAT0000281 6.09 1.59

5 miR-125b MIMAT0000423 7.16 1.44
miR-193b MIMAT0002819 6.09 1.06
miR-889 MIMAT0004921 4.00 0.53
miR-381 MIMAT0000736 3.77 0.36
miR-376c MIMAT0000720 3.63 0.34

10 miR-127 MIMAT0000446 3.58 0.32
miR-136 MIMAT0004606 3.58 0.32
miR-487b MIMAT0003180 3.48 0.31
miR-379 MIMAT0000733 2.77 0.16
miR-493 MIMAT0003161 3.21 0.13

15 miR-431 MIMAT0004757 2.08 0.12
miR-136 MIMAT0000448 2.60 0.12
miR-654 MIMAT0004814 2.41 0.11
miR-369 MIMAT0000721 2.35 0.11
miR-10a MIMAT0000253 2.83 0.10

20 miR-196b MIMAT0001080 3.11 0.10
miR-382 MIMAT0000737 2.46 0.09
miR-370 MIMAT0000722 2.34 0.09
miR-337 MIMAT0000754 2.16 0.08
miR-409 MIMAT0001639 2.02 0.06

25 miR-154 MIMAT0000452 2.05 0.06
miR-495 MIMAT0002817 1.84 0.06
miR-223 MIMAT0000280 1.55 0.06
miR-493 MIMAT0002813 1.58 0.06
miR-339 MIMAT0000764 1.75 0.05

30 miR-181b MIMAT0000257 2.66 0.05
miR-363 MIMAT0000707 1.96 0.05
miR-16-2 MIMAT0004518 2.17 0.05
miR-127 MIMAT0004604 1.99 0.05
miR-181a MIMAT0000256 2.47 0.04

35 miR-199b MIMAT0000263 1.99 0.04
miR-539 MIMAT0003163 1.83 0.04
miR-574 MIMAT0003239 1.73 0.04
miR-92a-1 MIMAT0004507 2.12 0.04
miR-320b MIMAT0005792 1.77 0.04

40 miR-23a MIMAT0000078 1.56 0.04
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mir-379

hg18: chr14:100,263,006-101,099,542 (836,537 bp)
q32.2-q32.31: DLK1 to DIO3

a

b

mir.MIMAT
RPM mn
(desc)

RPM
variance

Var Imp
rank

mir-379.MIMAT0000733 656.118 4.42E+06 14
mir-127.MIMAT0000446 580.587 3.46E+06 12
mir-134.MIMAT0000447 576.029 3.50E+06 34
mir-127.MIMAT0004604 251.965 795835 29
mir-381.MIMAT0000736 113.962 137485 8
mir-654.MIMAT0004814 108.838 137051 16
mir-136.MIMAT0000448 44.196 25635.7 13
mir-337.MIMAT0000754 41.9572 19855.5 17
mir-409.MIMAT0001639 40.9521 19509.9 19
mir-493.MIMAT0002813 34.747 14266.7 22
mir-495.MIMAT0002817 31.3997 10716 24
mir-376c.MIMAT0000720 29.3294 9902.31 9
mir-382.MIMAT0000737 28.5922 8644.23 20
mir-369.MIMAT0000721 26.645 7703.15 15
mir-136.MIMAT0004606 26.1565 8399.74 10
mir-431.MIMAT0004757 22.9447 7766.7 27
mir-539.MIMAT0003163 22.9294 5607.44 28
mir-154.MIMAT0000452 22.8352 6301.88 26
mir-487b.MIMAT0003180 21.154 5050.46 11
mir-323.MIMAT0000755 18.9954 4338.84 33
mir-889.MIMAT0004921 18.7535 3766.91 7
mir-493.MIMAT0003161 17.2745 3598.54 18
mir-485.MIMAT0002176 14.2023 1928.75
mir-410.MIMAT0002171 13.6656 2175.81
mir-409.MIMAT0001638 12.4815 1851.69
mir-494.MIMAT0002816 10.2659 1304.31
mir-432.MIMAT0002814 8.64855 804.562
mir-411.MIMAT0003329 8.49853 799.679
mir-758.MIMAT0003879 8.34291 774.264
mir-369.MIMAT0001621 7.84822 693.054
mir-655.MIMAT0003331 6.49073 469.361
mir-431.MIMAT0001625 5.84699 536.751
mir-299.MIMAT0002890 5.17319 330.057
mir-654.MIMAT0003330 4.46793 208.065
mir-377.MIMAT0004689 4.29314 253.909
mir-496.MIMAT0002818 3.7839 120.147
mir-411.MIMAT0004813 2.49763 81.214
mir-377.MIMAT0000730 2.34512 65.2719
mir-154.MIMAT0000453 2.31341 55.9208
mir-433.MIMAT0001627 2.02848 66.7281
mir-543.MIMAT0004954 2.00455 42.1723
mir-656.MIMAT0003332 1.50216 25.44
mir-376b.MIMAT0002172 1.46191 27.4015
mir-379.MIMAT0004690 1.21407 17.0127
mir-380.MIMAT0000735 0.734576 8.35261
mir-380.MIMAT0000734 0.633931 6.99461
mir-299.MIMAT0000687 0.539148 3.97514
mir-487a.MIMAT0002178 0.512895 4.14629
mir-541.MIMAT0004920 0.506782 3.35512
mir-337.MIMAT0004695 0.505363 3.59005
mir-485.MIMAT0002175 0.410875 2.34445
mir-770.MIMAT0003948 0.366411 1.51216
mir-668.MIMAT0003881 0.354173 1.99106
mir-1247.MIMAT0005899 0.277022 1.36718
mir-432.MIMAT0002815 0.177604 0.63608
mir-323.MIMAT0004696 0.124711 0.56057
mir-665.MIMAT0004952 0.118311 0.2936
mir-1197.MIMAT0005955 0.111728 0.2361
mir-541.MIMAT0004919 0.03918 0.0537
mir-412.MIMAT0002170 0.03446 0.0389
mir-544.MIMAT0003164 0.00485 0.00440
mir-300.MIMAT0004903 0 0
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M0 FAB subtypes
M1
M2
M3
M4
M5
M6
M7
PML-RARA TF fusions
MYH11-CBFB
RUNX1-RUNX1T1
PICALM-MLLT10
NPM1
TP53 Tumor suppressors
WT1
PHF6
DNMT3A DNAmethylation
DNMT3B
DNMT1
TET1
TET2
IDH1
IDH2
FLT3 Activated signaling
KIT
Other Tyr Kinases
Set/Thr Kinases
KRAS/NRAS
PTPs
RUNX1 Myeloid TFs
CEBPA
Other Myeloid TFs
MLL-X fusions Epigenetic modifiers
MLL_PTD
NUP98-NSD1
ASXL1
EZH2
KDM6A
Other modifiers
Cohesin
Spliceosome
Cytogenetic risk

Figure S17. MiRNAs in the 14q DLK1 to DIO3 locus. 
a) The 0.84 Mb genomic region between DKL1 and DIO3 on chromosome 14 contains clusters of snoRNAs (blue) and miRNAs 
(red). b) The overdispersed (Robinson and Smyth 2007) mean-variance relationship for normalized abundance (RPM) for the 706 
miRBase v13 mature and star strands (‘MIMATs’) that had a nonzero mean RPM across the 187 samples. The slope of the red line 
is 1.0. The miRNAs in the chr14 region (yellow and red points, and listed in (e) in order of decreasing mean RPM) lie close to a 
straight line, and those with a mean above ~10 RPM have atypically high variances. The input to NMF clustering and to the 
classifier was the abundance matrix for the 214 MIMATs whose RPM variance was above the 75th variance percentile (horizontal 
green line); only 22 of the MIMATs in the chromosome 14 region passed this threshold (black text in (e)). c) Most of the MIMATs in 
the chr14 region were relatively abundant in most M3 (group 5) samples. d,e) The horizontal bar schematically shows variable 
importance for a random forest classifier for group 5, increasing from L to R. Of 214 MIMATs ranked by classifier accuracy for 
group 5 samples, all 22 from the chromosome 14 region that were input to NMF and the classifier were ranked in the top 34, 
consistent with the relatively high variances in (a) and the abundance heatmap in (e).
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Figure S18. Numbers of Tier 1 (coding) mutations in different tumor
types analyzed by TCGA.
Comparison of tier 1 mutation numbers across 5 published tumor types from The
Cancer Genome Atlas. The mutational burden in AML is significantly lower than
each of the other types (p values refer to comparisons of each tumor type to AML).
All tumors analyzed were included in the calculations, but 4 lung and 21 colorectal
cases were omitted from the plot, since they had greater than 1000 mutations
(maximum of 12,411). The box plots identify the median values along with the
25th and 75th percentile.



Figure S17. Batch Effects in mRNA-seq
a) Hierarchical clustering for mRNA expression from RNA-seq data b) PCA: First two principal components for RNA-seq,
with samples connected by centroids according to plate ID.

Figure S19. Batch Effects in mRNA-seq 
a) Hierarchical clustering for mRNA expression from RNA-seq data b) PCA: First two principal components for RNA-seq, with 
samples connected by centroids according to plate ID.



Figure S20. Batch effects in miRNA-seq
a) Hierarchical clustering of samples for miRNA expression from miRNA-seq data. b) PCA: First two principal
components for miRNA expression from miRNA-seq data, with samples connected by centroids according to plate ID.



Figure S21. Batch effects in methylation arrays
a) Hierarchical clustering plot for DNA methylation b) HM27 data Hierarchical clustering plot for DNA methylation HM450 data c) 
PCA for DNA methylation HM27, with samples connected by centroids according to plate ID. d) PCA for DNA methylation HM450, 
with samples connected by centroids according to plate ID.

    a                                                            b

     c                                                            d
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C. Supplementary Tables 

 
Note: Some large tables are hosted on the TCGA DCC site: 
https://tcga-data.nci.nih.gov/docs/publications/laml_2012/ 
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Table S1: Clinical matrix  
   See separate xlsx: 
   https://tcga-data.nci.nih.gov/docs/publications/aml_2012/SupplementalTable01.xlsx 
Per-sample table containing information on sex, race, cytogenetics, WBC, Fusions, SVs, risk groups, and a listing of all 
mutated genes across the cohort.  Copy number amplifications are noted by a red background color, deletions are blue, 
and UPD events are green. Percent AML in skin (Column M) was determined by assaying the frequency of somatic 
mutations in the normal sample.  The number of subclones (Column N) was determined as described in Supplementary 
Methods section A.3.11. 
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Table S2: Multivariate Survival statistics 

a) Event Free Survival 
 
Covariate	
   Parameter	
  

Estimate	
  
Standard	
  
Error	
  

chi-­‐square	
  p-­‐
value	
  

Hazard	
  
Ratio	
  

95%	
  CI	
  

Basic	
  Model	
  (stratifying	
  by	
  Age	
  <	
  60	
  vs	
  Age	
  >=	
  60)	
   	
   	
   	
   	
   	
  
WBC	
  >	
  16	
   0.53	
   0.17	
   0.002	
   1.70	
   1.23	
  -­‐	
  2.37	
  
Cytogenetic	
  Classification=Good	
   -­‐0.75	
   0.27	
   0.006	
   0.47	
   0.28	
  -­‐	
  0.80	
  
Cytogenetic	
  Classification=Poor	
   0.41	
   0.19	
   0.03	
   1.51	
   1.04	
  -­‐	
  2.21	
  
	
   	
   	
   	
   	
   	
  
Terms	
  added	
  separately	
  to	
  the	
  base	
  model	
   	
   	
   	
   	
   	
  
TP-­‐53	
   0.86	
   0.35	
   0.01	
   2.37	
   1.20	
  -­‐	
  4.71	
  
DNMT3A	
   0.23	
   0.19	
   0.22	
   1.26	
   0.87	
  -­‐	
  1.84	
  
FLT3	
   0.39	
   0.19	
   0.04	
   1.47	
   1.10	
  -­‐	
  2.15	
  
PML-­‐RARA	
   -­‐0.14	
   0.49	
   0.77	
   0.87	
   0.33	
  -­‐	
  2.25	
  
MYH11-­‐CBFB	
   -­‐0.21	
   0.53	
   0.69	
   0.81	
   0.29	
  -­‐	
  2.27	
  
RUNX1-­‐RUNX1T1	
   0.34	
   0.58	
   0.55	
   1.41	
   0.46	
  -­‐	
  4.37	
  
NUP98-­‐NSD1	
   0.54	
   0.80	
   0.37	
   1.72	
   0.53	
  -­‐	
  5.58	
  
	
   	
   	
   	
   	
   	
  
Final	
  Model	
   	
   	
   	
   	
   	
  
WBC	
  >	
  16	
   0.57	
   0.18	
   0.002	
   1.76	
   1.23	
  -­‐	
  2.52	
  
Cytogenetic	
  Classification=Good	
   -­‐0.75	
   0.27	
   0.006	
   0.47	
   0.28	
  -­‐	
  0.81	
  
Cytogenetic	
  Classification=Poor	
   0.30	
   0.22	
   0.18	
   1.35	
   0.87	
  -­‐	
  2.09	
  
TP-­‐53	
   0.89	
   0.35	
   0.01	
   2.43	
   1.23	
  -­‐	
  4.83	
  
FLT3	
   0.41	
   0.19	
   0.04	
   1.50	
   1.03	
  -­‐	
  2.20	
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b) Overall Survival 

 
Covariate	
   Parameter	
  

Estimate	
  
Standard	
  
Error	
  

chi-­‐square	
  p-­‐
value	
  

Hazard	
  
Ratio	
  

95%	
  CI	
  

Basic	
  Model	
  (stratifying	
  by	
  Age	
  <	
  60	
  vs	
  Age	
  >=	
  60)	
   	
   	
   	
   	
   	
  
WBC	
  >	
  16	
   0.35	
   0.17	
   0.04	
   1.43	
   1.02	
  -­‐	
  2.00	
  
Cytogenetic	
  Classification=Good	
   -­‐0.75	
   0.30	
   0.001	
   0.47	
   0.30	
  -­‐	
  0.83	
  
Cytogenetic	
  Classification=Poor	
   0.46	
   0.20	
   0.02	
   1.58	
   1.07	
  -­‐	
  2.33	
  
	
   	
   	
   	
   	
   	
  
Terms	
  added	
  separately	
  to	
  the	
  base	
  model	
   	
   	
   	
   	
   	
  
TP-­‐53	
   0.96	
   0.35	
   0.01	
   2.61	
   1.30	
  -­‐	
  5.23	
  
DNMT3A	
   0.34	
   0.20	
   0.08	
   1.41	
   0.96	
  -­‐	
  2.08	
  
FLT3	
   0.34	
   0.20	
   0.09	
   1.41	
   0.95	
  -­‐	
  2.10	
  
PML-­‐RARA	
   -­‐0.37	
   0.53	
   0.48	
   0.69	
   0.24	
  -­‐	
  1.94	
  
MYH11-­‐CBFB	
   -­‐0.18	
   0.56	
   0.76	
   0.84	
   0.28	
  -­‐	
  2.53	
  
RUNX1-­‐RUNX1T1	
   0.65	
   0.59	
   0.27	
   1.92	
   0.61	
  -­‐	
  6.09	
  
NUP98-­‐NSD1	
   0.81	
   0.61	
   0.18	
   2.26	
   0.69	
  -­‐	
  7.41	
  
Other	
  Modifiers	
   0.16	
   0.24	
   0.52	
   1.17	
   0.73	
  -­‐	
  1.87	
  
	
   	
   	
   	
   	
   	
  
Final	
  Model	
   	
   	
   	
   	
   	
  
WBC	
  >	
  16	
   0.49	
   0.18	
   0.01	
   1.63	
   1.13	
  -­‐	
  2.33	
  
Cytogenetic	
  Classification=Good	
   -­‐0.76	
   0.29	
   0.01	
   0.47	
   0.27	
  -­‐	
  0.83	
  
Cytogenetic	
  Classification=Poor	
   0.24	
   0.22	
   0.27	
   1.28	
   0.83	
  -­‐	
  1.98	
  
TP53	
   0.96	
   0.35	
   0.01	
   2.61	
   1.30	
  -­‐	
  5.23	
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Table S3: Sequencing Coverage 

Average genomic coverage for each tumor and normal sample 
 
 

Sample Mean Depth of Coverage Sample Mean Depth of Coverage 

TCGA-AB-2802-03B-01W-0728-08 77.21 TCGA-AB-2904-03A-01W-0732-08 152.77 

TCGA-AB-2802-11B-01W-0728-08 92.93 TCGA-AB-2904-11A-01W-0732-08 101.25 

TCGA-AB-2803-03B-01W-0728-08 73.07 TCGA-AB-2905-03A-01D-0739-09 40.80 

TCGA-AB-2803-11B-01W-0728-08 90.77 TCGA-AB-2905-11A-01D-0739-09 25.30 

TCGA-AB-2804-03B-01W-0728-08 191.97 TCGA-AB-2906-03A-01D-0739-09 28.29 

TCGA-AB-2804-11B-01W-0728-08 182.64 TCGA-AB-2906-11A-01D-0739-09 23.56 

TCGA-AB-2805-03B-01W-0728-08 210.13 TCGA-AB-2907-03A-01D-0739-09 28.53 

TCGA-AB-2805-11B-01W-0728-08 179.27 TCGA-AB-2907-11A-01D-0739-09 33.33 

TCGA-AB-2806-03B-01W-0728-08 80.88 TCGA-AB-2908-03A-01W-0745-08 56.47 

TCGA-AB-2806-11B-01W-0728-08 85.16 TCGA-AB-2908-11A-01W-0745-08 196.17 

TCGA-AB-2807-03D-01W-0755-09 105.54 TCGA-AB-2909-03A-01W-0755-09 132.34 

TCGA-AB-2807-11D-01W-0755-09 117.96 TCGA-AB-2909-11A-01W-0755-09 117.88 

TCGA-AB-2808-03D-01W-0755-09 133.50 TCGA-AB-2910-03A-01W-0745-08 201.18 

TCGA-AB-2808-11D-01W-0755-09 134.02 TCGA-AB-2910-11A-01W-0745-08 65.40 

TCGA-AB-2809-03D-01W-0755-09 113.62 TCGA-AB-2911-03A-01W-0732-08 146.21 

TCGA-AB-2809-11D-01W-0755-09 132.68 TCGA-AB-2911-11A-01W-0732-08 97.63 

TCGA-AB-2810-03B-01W-0728-08 189.13 TCGA-AB-2912-03A-01W-0732-08 158.85 

TCGA-AB-2810-11B-01W-0728-08 180.31 TCGA-AB-2912-11A-01W-0761-09 166.40 

TCGA-AB-2811-03B-01W-0728-08 90.06 TCGA-AB-2913-03A-01W-0732-08 100.54 

TCGA-AB-2811-11B-01W-0728-08 88.25 TCGA-AB-2913-11A-01W-0732-08 130.24 

TCGA-AB-2812-03B-01W-0728-08 206.34 TCGA-AB-2914-03A-01W-0732-08 123.15 

TCGA-AB-2812-11B-01W-0728-08 389.81 TCGA-AB-2914-11A-01W-0732-08 115.04 

TCGA-AB-2813-03B-01W-0728-08 168.75 TCGA-AB-2915-03A-01W-0745-08 75.21 

TCGA-AB-2813-11B-01W-0728-08 156.13 TCGA-AB-2915-11A-01W-0745-08 167.48 

TCGA-AB-2814-03D-01W-0755-09 105.47 TCGA-AB-2916-03A-01W-0732-08 92.66 
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TCGA-AB-2814-11D-01W-0755-09 104.83 TCGA-AB-2916-11A-01W-0732-08 100.00 

TCGA-AB-2815-03B-01W-0728-08 175.39 TCGA-AB-2917-03A-01W-0732-08 73.22 

TCGA-AB-2815-11B-01W-0728-08 174.79 TCGA-AB-2917-11A-01W-0732-08 20.66 

TCGA-AB-2816-03B-01W-0728-08 69.68 TCGA-AB-2918-03A-01W-0745-08 76.48 

TCGA-AB-2816-11B-01W-0728-08 91.92 TCGA-AB-2918-11A-01W-0761-09 168.68 

TCGA-AB-2817-03B-01W-0728-08 177.51 TCGA-AB-2919-03A-01W-0745-08 189.75 

TCGA-AB-2817-11B-01W-0728-08 168.90 TCGA-AB-2919-11A-01W-0745-08 171.34 

TCGA-AB-2818-03B-01W-0728-08 80.59 TCGA-AB-2920-03A-01W-0732-08 126.78 

TCGA-AB-2818-11B-01W-0728-08 84.61 TCGA-AB-2920-11A-01W-0732-08 103.18 

TCGA-AB-2819-03B-01W-0728-08 75.49 TCGA-AB-2921-03A-01W-0755-09 119.27 

TCGA-AB-2819-11B-01W-0728-08 91.58 TCGA-AB-2921-11A-01W-0755-09 129.34 

TCGA-AB-2820-03B-01W-0728-08 202.87 TCGA-AB-2922-03A-01W-0745-08 172.77 

TCGA-AB-2820-11B-01W-0728-08 210.83 TCGA-AB-2922-11A-01W-0745-08 189.03 

TCGA-AB-2821-03B-01W-0728-08 162.06 TCGA-AB-2923-03A-01W-0745-08 197.14 

TCGA-AB-2821-11B-01W-0728-08 185.90 TCGA-AB-2923-11A-01W-0745-08 178.76 

TCGA-AB-2822-03D-01W-0755-09 109.02 TCGA-AB-2924-03A-01W-0745-08 176.74 

TCGA-AB-2822-11D-01W-0755-09 115.18 TCGA-AB-2924-11A-01W-0745-08 138.11 

TCGA-AB-2823-03B-01W-0728-08 211.97 TCGA-AB-2925-03A-01W-0732-08 141.53 

TCGA-AB-2823-11B-01W-0728-08 210.39 TCGA-AB-2925-11A-01W-0732-08 133.49 

TCGA-AB-2824-03B-01W-0728-08 222.68 TCGA-AB-2926-03A-01W-0732-08 153.91 

TCGA-AB-2824-11B-01W-0728-08 212.77 TCGA-AB-2926-11A-01W-0761-09 122.81 

TCGA-AB-2825-03D-01W-0755-09 98.23 TCGA-AB-2927-03A-01W-0755-09 126.68 

TCGA-AB-2825-11D-01W-0755-09 88.40 TCGA-AB-2927-11A-01W-0755-09 115.35 

TCGA-AB-2826-03B-01W-0728-08 233.34 TCGA-AB-2928-03A-01W-0745-08 182.69 

TCGA-AB-2826-11B-01W-0728-08 232.28 TCGA-AB-2928-11A-01W-0745-08 209.04 

TCGA-AB-2827-03B-01W-0728-08 281.03 TCGA-AB-2929-03A-01W-0732-08 175.14 

TCGA-AB-2827-11B-01W-0728-08 247.45 TCGA-AB-2929-11A-01W-0732-08 160.64 

TCGA-AB-2828-03C-01W-0761-09 162.34 TCGA-AB-2930-03A-01W-0761-09 142.13 

TCGA-AB-2828-11B-01W-0728-08 253.19 TCGA-AB-2930-11A-01W-0745-08 203.37 

TCGA-AB-2829-03B-01W-0728-08 262.44 TCGA-AB-2931-03A-01W-0745-08 71.09 

TCGA-AB-2829-11B-01W-0728-08 240.69 TCGA-AB-2931-11A-01W-0745-08 186.38 
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TCGA-AB-2830-03B-01W-0728-08 267.74 TCGA-AB-2932-03A-01W-0745-08 58.86 

TCGA-AB-2830-11B-01W-0728-08 259.51 TCGA-AB-2932-11A-01W-0745-08 77.84 

TCGA-AB-2831-03A-01W-0726-08 216.83 TCGA-AB-2933-03A-01W-0732-08 182.34 

TCGA-AB-2831-11A-01W-0727-08 213.51 TCGA-AB-2933-11A-01W-0732-08 148.51 

TCGA-AB-2832-03B-01W-0728-08 267.58 TCGA-AB-2934-03A-01W-0755-09 149.90 

TCGA-AB-2832-11B-01W-0729-08 254.80 TCGA-AB-2934-11A-01W-0755-09 121.94 

TCGA-AB-2833-03B-01W-0728-08 206.10 TCGA-AB-2935-03A-01W-0755-09 134.23 

TCGA-AB-2833-11B-01W-0729-08 253.40 TCGA-AB-2935-11A-01W-0755-09 158.64 

TCGA-AB-2834-03B-01W-0728-08 217.09 TCGA-AB-2936-03A-01W-0745-08 78.45 

TCGA-AB-2834-11B-01W-0729-08 187.42 TCGA-AB-2936-11A-01W-0745-08 195.29 

TCGA-AB-2835-03B-01W-0728-08 204.42 TCGA-AB-2937-03A-01W-0732-08 161.86 

TCGA-AB-2835-11B-01W-0729-08 215.12 TCGA-AB-2937-11A-01W-0732-08 172.04 

TCGA-AB-2836-03B-01W-0728-08 217.68 TCGA-AB-2938-03A-01W-0732-08 210.58 

TCGA-AB-2836-11B-01W-0729-08 216.62 TCGA-AB-2938-11A-01W-0732-08 173.37 

TCGA-AB-2837-03B-01W-0728-08 203.46 TCGA-AB-2939-03A-01W-0745-08 85.71 

TCGA-AB-2837-11B-01W-0729-08 209.80 TCGA-AB-2939-11A-01W-0745-08 79.39 

TCGA-AB-2838-03A-01W-0726-08 398.36 TCGA-AB-2940-03A-01W-0733-08 198.63 

TCGA-AB-2838-11A-01W-0727-08 268.03 TCGA-AB-2940-11A-01W-0732-08 203.07 

TCGA-AB-2839-03B-01W-0728-08 76.28 TCGA-AB-2941-03A-01W-0745-08 61.30 

TCGA-AB-2839-11B-01W-0729-08 87.55 TCGA-AB-2941-11A-01W-0745-08 156.66 

TCGA-AB-2840-03D-01W-0755-09 124.06 TCGA-AB-2942-03A-01W-0733-08 212.71 

TCGA-AB-2840-11D-01W-0755-09 104.31 TCGA-AB-2942-11A-01W-0732-08 187.52 

TCGA-AB-2841-03B-01W-0728-08 231.13 TCGA-AB-2943-03A-01W-0745-08 54.64 

TCGA-AB-2841-11B-01W-0729-08 216.17 TCGA-AB-2943-11A-01W-0745-08 112.07 

TCGA-AB-2842-03A-01W-0726-08 274.93 TCGA-AB-2944-03A-01W-0755-09 124.80 

TCGA-AB-2842-11A-01W-0727-08 390.73 TCGA-AB-2944-11A-01W-0755-09 120.72 

TCGA-AB-2843-03B-01W-0728-08 219.93 TCGA-AB-2945-03A-01W-0733-08 189.87 

TCGA-AB-2843-11B-01W-0729-08 211.73 TCGA-AB-2945-11A-01W-0732-08 178.04 

TCGA-AB-2844-03B-01W-0728-08 223.46 TCGA-AB-2946-03A-01W-0755-09 112.71 

TCGA-AB-2844-11B-01W-0729-08 221.50 TCGA-AB-2946-11A-01W-0755-09 121.64 

TCGA-AB-2845-03D-01W-0755-09 122.74 TCGA-AB-2947-03A-01W-0745-08 177.40 
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TCGA-AB-2845-11D-01W-0755-09 105.27 TCGA-AB-2947-11A-01W-0745-08 68.52 

TCGA-AB-2846-03B-01W-0728-08 184.79 TCGA-AB-2948-03A-01W-0755-09 122.10 

TCGA-AB-2846-11B-01W-0729-08 190.46 TCGA-AB-2948-11A-01W-0755-09 122.45 

TCGA-AB-2847-03B-01W-0728-08 195.12 TCGA-AB-2949-03A-01W-0733-08 174.09 

TCGA-AB-2847-11B-01W-0729-08 187.91 TCGA-AB-2949-11A-01W-0732-08 163.16 

TCGA-AB-2848-03B-01W-0728-08 194.63 TCGA-AB-2950-03A-01W-0733-08 177.30 

TCGA-AB-2848-11B-01W-0729-08 192.54 TCGA-AB-2950-11A-01W-0732-08 181.95 

TCGA-AB-2849-03B-01W-0728-08 192.95 TCGA-AB-2952-03A-01W-0733-08 172.64 

TCGA-AB-2849-11B-01W-0729-08 177.39 TCGA-AB-2952-11A-01W-0732-08 183.02 

TCGA-AB-2850-03B-01W-0728-08 92.68 TCGA-AB-2954-03A-01W-0733-08 198.44 

TCGA-AB-2850-11B-01W-0729-08 70.37 TCGA-AB-2954-11A-01W-0732-08 190.63 

TCGA-AB-2851-03B-01W-0728-08 214.01 TCGA-AB-2955-03A-01W-0733-08 194.77 

TCGA-AB-2851-11B-01W-0729-08 203.38 TCGA-AB-2955-11A-01W-0732-08 367.66 

TCGA-AB-2853-03D-01W-0755-09 182.34 TCGA-AB-2956-03A-01W-0733-08 196.67 

TCGA-AB-2853-11D-01W-0755-09 124.08 TCGA-AB-2956-11A-01W-0732-08 206.57 

TCGA-AB-2854-03B-01W-0728-08 183.47 TCGA-AB-2957-03A-01W-0733-08 192.96 

TCGA-AB-2854-11B-01W-0729-08 192.60 TCGA-AB-2957-11A-01W-0732-08 197.97 

TCGA-AB-2855-03B-01W-0728-08 205.64 TCGA-AB-2959-03A-01W-0733-08 164.91 

TCGA-AB-2855-11B-01W-0729-08 203.96 TCGA-AB-2959-11A-01W-0732-08 194.59 

TCGA-AB-2856-03A-01W-0726-08 172.94 TCGA-AB-2963-03A-01D-0739-09 25.46 

TCGA-AB-2856-11A-01W-0727-08 170.25 TCGA-AB-2963-11A-01D-0739-09 26.62 

TCGA-AB-2857-03B-01W-0728-08 207.85 TCGA-AB-2964-03A-01D-0739-09 25.61 

TCGA-AB-2857-11B-01W-0729-08 208.65 TCGA-AB-2964-11A-01D-0739-09 31.46 

TCGA-AB-2858-03D-01W-0755-09 142.90 TCGA-AB-2965-03A-01D-0739-09 35.17 

TCGA-AB-2858-12A-01W-0755-09 119.35 TCGA-AB-2965-11A-01D-0739-09 28.21 

TCGA-AB-2859-03B-01W-0728-08 225.96 TCGA-AB-2966-03A-01D-0739-09 26.45 

TCGA-AB-2859-11B-01W-0729-08 210.48 TCGA-AB-2966-11A-01D-0739-09 25.88 

TCGA-AB-2860-03B-01W-0728-08 229.16 TCGA-AB-2967-03A-01D-0739-09 29.00 

TCGA-AB-2860-11B-01W-0729-08 224.24 TCGA-AB-2967-11A-01D-0739-09 30.69 

TCGA-AB-2861-03B-01W-0728-08 225.32 TCGA-AB-2968-03A-01D-0739-09 39.93 

TCGA-AB-2861-11B-01W-0729-08 219.88 TCGA-AB-2968-11A-01D-0739-09 39.46 
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TCGA-AB-2862-03B-01W-0728-08 207.80 TCGA-AB-2969-03A-01D-0739-09 32.27 

TCGA-AB-2862-11B-01W-0729-08 104.43 TCGA-AB-2969-11A-01D-0739-09 40.57 

TCGA-AB-2863-03D-01W-0755-09 112.86 TCGA-AB-2970-03A-01D-0739-09 29.70 

TCGA-AB-2863-11B-01W-0729-08 240.98 TCGA-AB-2970-11A-01D-0739-09 29.90 

TCGA-AB-2864-03D-01W-0755-09 119.47 TCGA-AB-2971-03A-01D-0739-09 34.86 

TCGA-AB-2864-11D-01W-0755-09 103.03 TCGA-AB-2971-11A-01D-0739-09 31.64 

TCGA-AB-2865-03B-01W-0728-08 90.76 TCGA-AB-2972-03A-01D-0739-09 42.22 

TCGA-AB-2865-11B-01W-0729-08 74.23 TCGA-AB-2972-11A-01D-0739-09 31.87 

TCGA-AB-2866-03B-01W-0728-08 221.43 TCGA-AB-2973-03A-01D-0739-09 32.80 

TCGA-AB-2866-11B-01W-0729-08 212.64 TCGA-AB-2973-11A-01D-0739-09 36.96 

TCGA-AB-2867-03B-01W-0728-08 239.43 TCGA-AB-2974-03A-01D-0739-09 31.79 

TCGA-AB-2867-11B-01W-0729-08 189.40 TCGA-AB-2974-11A-01D-0739-09 26.99 

TCGA-AB-2868-03B-01W-0728-08 82.16 TCGA-AB-2975-03A-01D-0739-09 26.90 

TCGA-AB-2868-11B-01W-0729-08 83.46 TCGA-AB-2975-11A-01D-0739-09 32.00 

TCGA-AB-2869-03A-01W-0761-09 198.76 TCGA-AB-2976-03A-01D-0739-09 25.51 

TCGA-AB-2869-11A-01W-0732-08 231.64 TCGA-AB-2976-11A-01D-0739-09 26.67 

TCGA-AB-2870-03A-01W-0732-08 224.57 TCGA-AB-2977-03A-01D-0739-09 28.22 

TCGA-AB-2870-11A-01W-0732-08 210.88 TCGA-AB-2977-11A-01D-0739-09 30.17 

TCGA-AB-2871-03A-01W-0732-08 210.19 TCGA-AB-2978-03A-01D-0739-09 34.03 

TCGA-AB-2871-11A-01W-0732-08 216.07 TCGA-AB-2978-11A-01D-0739-09 31.35 

TCGA-AB-2872-03A-01W-0732-08 220.65 TCGA-AB-2979-03A-01D-0739-09 34.26 

TCGA-AB-2872-11A-01W-0761-09 157.59 TCGA-AB-2979-11A-01D-0739-09 26.20 

TCGA-AB-2873-03A-01W-0732-08 221.89 TCGA-AB-2980-03A-01D-0739-09 34.14 

TCGA-AB-2873-11A-01W-0732-08 227.09 TCGA-AB-2980-11A-01D-0739-09 28.33 

TCGA-AB-2874-03A-01W-0732-08 220.08 TCGA-AB-2981-03A-01D-0739-09 25.13 

TCGA-AB-2874-11A-01W-0732-08 221.60 TCGA-AB-2981-11A-01D-0739-09 40.36 

TCGA-AB-2875-03A-01W-0732-08 229.85 TCGA-AB-2982-03A-01D-0739-09 28.84 

TCGA-AB-2875-11A-01W-0732-08 208.51 TCGA-AB-2982-11A-01D-0739-09 24.53 

TCGA-AB-2876-03A-01W-0732-08 221.03 TCGA-AB-2983-03A-01D-0739-09 26.28 

TCGA-AB-2876-11A-01W-0732-08 218.05 TCGA-AB-2983-11A-01D-0739-09 41.04 

TCGA-AB-2877-03A-01W-0732-08 225.15 TCGA-AB-2984-03A-01D-0739-09 21.71 
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TCGA-AB-2877-11A-01W-0732-08 225.92 TCGA-AB-2984-11A-01D-0739-09 18.94 

TCGA-AB-2878-03A-01W-0732-08 194.99 TCGA-AB-2985-03A-01D-0739-09 37.69 

TCGA-AB-2878-11A-01W-0732-08 62.91 TCGA-AB-2985-11A-01D-0739-09 28.31 

TCGA-AB-2879-03A-01W-0732-08 186.85 TCGA-AB-2986-03A-01D-0739-09 34.62 

TCGA-AB-2879-11A-01W-0732-08 196.42 TCGA-AB-2986-11A-01D-0739-09 28.72 

TCGA-AB-2880-03A-01W-0732-08 180.38 TCGA-AB-2987-03A-01D-0739-09 26.01 

TCGA-AB-2880-11A-01W-0732-08 210.41 TCGA-AB-2987-11A-01D-0739-09 30.63 

TCGA-AB-2881-03A-01W-0732-08 170.96 TCGA-AB-2988-03A-01D-0739-09 34.86 

TCGA-AB-2881-11A-01W-0732-08 185.32 TCGA-AB-2988-11A-01D-0739-09 47.29 

TCGA-AB-2882-03A-01W-0761-09 157.75 TCGA-AB-2989-03A-01D-0739-09 29.08 

TCGA-AB-2882-11A-01W-0732-08 184.84 TCGA-AB-2989-11A-01D-0739-09 32.68 

TCGA-AB-2883-03A-01W-0732-08 172.53 TCGA-AB-2990-03A-01D-0739-09 29.10 

TCGA-AB-2883-11A-01W-0732-08 194.23 TCGA-AB-2990-11A-01D-0739-09 27.81 

TCGA-AB-2884-03A-01W-0732-08 105.80 TCGA-AB-2991-03A-01D-0739-09 27.25 

TCGA-AB-2884-11A-01W-0732-08 145.96 TCGA-AB-2991-11A-01D-0739-09 24.84 

TCGA-AB-2885-03A-01W-0732-08 125.73 TCGA-AB-2992-03A-01D-0739-09 31.74 

TCGA-AB-2885-11A-01W-0732-08 159.68 TCGA-AB-2992-11A-01D-0739-09 30.82 

TCGA-AB-2886-03A-01W-0732-08 164.75 TCGA-AB-2993-03A-01D-0739-09 26.38 

TCGA-AB-2886-11A-01W-0732-08 188.17 TCGA-AB-2993-11A-01D-0739-09 24.34 

TCGA-AB-2887-03A-01W-0732-08 156.32 TCGA-AB-2994-03A-01D-0739-09 30.62 

TCGA-AB-2887-11A-01W-0732-08 189.84 TCGA-AB-2994-11A-01D-0739-09 26.36 

TCGA-AB-2888-03A-01W-0732-08 172.71 TCGA-AB-2995-03A-01D-0739-09 31.51 

TCGA-AB-2888-11A-01W-0732-08 199.67 TCGA-AB-2995-11A-01D-0739-09 28.09 

TCGA-AB-2889-03A-01W-0732-08 163.90 TCGA-AB-2996-03A-01D-0739-09 36.17 

TCGA-AB-2889-11A-01W-0761-09 164.51 TCGA-AB-2996-11A-01D-0739-09 26.39 

TCGA-AB-2890-03A-01W-0732-08 127.98 TCGA-AB-2997-03A-01D-0739-09 26.17 

TCGA-AB-2890-11A-01W-0732-08 144.93 TCGA-AB-2997-11A-01D-0739-09 26.58 

TCGA-AB-2891-03A-01W-0733-08 140.01 TCGA-AB-2998-03A-01D-0739-09 30.21 

TCGA-AB-2891-11A-01W-0732-08 148.66 TCGA-AB-2998-11A-01D-0739-09 28.59 

TCGA-AB-2892-03A-01W-0733-08 162.45 TCGA-AB-2999-03A-01D-0739-09 25.47 

TCGA-AB-2892-11A-01W-0732-08 154.12 TCGA-AB-2999-11A-01D-0739-09 29.51 
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TCGA-AB-2893-03A-01W-0733-08 101.60 TCGA-AB-3000-03A-01D-0739-09 26.34 

TCGA-AB-2893-11A-01W-0732-08 165.02 TCGA-AB-3000-11A-01D-0739-09 29.87 

TCGA-AB-2894-03A-01W-0733-08 166.68 TCGA-AB-3001-03A-01D-0739-09 26.83 

TCGA-AB-2894-11A-01W-0732-08 174.47 TCGA-AB-3001-11A-01D-0739-09 28.33 

TCGA-AB-2895-03A-01W-0733-08 151.35 TCGA-AB-3002-03A-01D-0739-09 27.39 

TCGA-AB-2895-11A-01W-0732-08 171.12 TCGA-AB-3002-11A-01D-0739-09 30.16 

TCGA-AB-2896-03A-01W-0733-08 146.60 TCGA-AB-3005-03A-01D-0739-09 36.13 

TCGA-AB-2896-11A-01W-0732-08 176.46 TCGA-AB-3005-11A-01D-0739-09 32.87 

TCGA-AB-2897-03A-01W-0733-08 157.86 TCGA-AB-3006-03A-01D-0739-09 31.14 

TCGA-AB-2897-11A-01W-0732-08 172.35 TCGA-AB-3006-11A-01D-0739-09 33.49 

TCGA-AB-2898-03A-01W-0733-08 196.42 TCGA-AB-3007-03A-01D-0739-09 26.46 

TCGA-AB-2898-11A-01W-0732-08 196.84 TCGA-AB-3007-11A-01D-0739-09 26.92 

TCGA-AB-2899-03A-01W-0733-08 184.91 TCGA-AB-3008-03A-01D-0739-09 39.05 

TCGA-AB-2899-11A-01W-0732-08 182.22 TCGA-AB-3008-11A-01D-0739-09 28.01 

TCGA-AB-2900-03A-01W-0733-08 185.84 TCGA-AB-3009-03A-01D-0739-09 32.95 

TCGA-AB-2900-11A-01W-0732-08 193.20 TCGA-AB-3009-11A-01D-0739-09 31.63 

TCGA-AB-2901-03A-01W-0733-08 183.65 TCGA-AB-3011-03A-01D-0739-09 50.40 

TCGA-AB-2901-11A-01W-0732-08 188.39 TCGA-AB-3011-11A-01D-0739-09 30.12 

TCGA-AB-2903-03A-01W-0761-09 160.61 TCGA-AB-3012-03A-01D-0739-09 25.76 

TCGA-AB-2903-11A-01W-0732-08 137.26 TCGA-AB-3012-11A-01D-0739-09 33.38 

 
 
Table S4: Summary of assays performed for each sample 
   See separate file 
   https://tcga-data.nci.nih.gov/docs/publications/aml_2012/SupplementalTable04.tsv 
 
 
Table S5: Segments of copy number amplification and deletion  
   See separate file 
   https://tcga-data.nci.nih.gov/docs/publications/aml_2012/SupplementalTable05.tsv 
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Table S6: All somatic mutations with annotation and readcounts from DNA and RNA sequencing 
   See separate file 
   https://tcga-data.nci.nih.gov/docs/publications/aml_2012/SupplementalTable06.tsv 
 
Table S7: Significantly Mutated Genes 
 
Significantly mutated genes, as determined by the MuSiC package.  Columns 7-9 give p-values for a Fisher’s Combined 
P-value Test (FCPT) a Likelihood Ratio Test (LRT) and a Convolution Test (CT). The subsequent 3 columns give FDR 
values for the same, after multiple-testing correction. 
 
 

Gene Indels SNVs Tot 
Muts Covd Bps Muts 

pMbp P-value FCPT P-value LRT P-value CT FDR FCPT FDR LRT FDR CT 

CEBPA 16 3 19 41306 459.98 0 0 0 0 0 0 

DNMT3A 5 52 57 629565 90.54 0 0 0 0 0 0 

FLT3 37 17 54 657876 82.08 0 0 0 0 0 0 

IDH1 0 19 19 253738 74.88 0 0 0 0 0 0 

IDH2 0 20 20 243278 82.21 0 0 0 0 0 0 

NPM1 54 1 55 183897 299.08 0 0 0 0 0 0 

NRAS 0 15 15 116904 128.31 0 0 0 0 0 0 

RUNX1 6 15 21 283105 74.18 0 0 0 0 0 0 

TET2 16 12 29 1110805 26.11 0 0 0 0 0 0 

TP53 4 14 18 264994 67.93 0 0 0 0 0 0 

WT1 9 4 13 233938 55.57 0 0 0 0 0 0 

KRAS 0 8 8 138617 57.71 2.6068E-13 1.11022E-16 7.35648E-19 8.11911E-10 3.19189E-13 2.29124E-15 

U2AF1 0 8 8 164572 48.61 4.35985E-13 0 1.59177E-18 1.16392E-09 0 4.57634E-15 

KIT 3 7 10 635486 15.74 3.61156E-13 2.22045E-16 2.53343E-18 1.03832E-09 5.9278E-13 6.76335E-15 

PTPN11 0 9 9 456145 19.73 2.14748E-11 2.27596E-14 2.21698E-16 5.35081E-08 5.67093E-11 5.52397E-13 

PHF6 2 4 6 326403 18.38 1.09882E-07 2.19761E-10 3.07091E-12 0.000256678 5.13349E-07 7.17346E-09 
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SMC3 0 7 7 745533 9.39 6.28548E-07 9.74997E-08 1.05739E-10 0.001381882 0.000173526 2.3247E-07 

FAM5C 0 6 6 462924 12.96 9.49337E-06 4.52893E-09 2.76489E-09 0.018674464 9.95698E-06 5.74099E-06 

SMC1A 0 7 7 852590 8.21 8.59176E-06 4.75931E-08 3.92292E-09 0.017839838 8.89397E-05 7.71679E-06 

RAD21 3 2 5 387435 12.91 2.55389E-05 1.42727E-08 7.76104E-09 0.047725814 2.96357E-05 1.45034E-05 

STAG2 0 6 6 816412 7.35 4.38476E-05 3.69498E-08 3.24599E-08 0.078038344 7.26842E-05 5.77709E-05 

HNRNPK 3 0 3 337099 8.9 0.009064315 2.4535E-07 5.84965E-06 1 0.000398694 0.009505687 

EZH2 2 2 4 496328 8.06 0.005591501 1.92418E-05 8.95329E-06 1 0.024085704 0.013942879 
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Table S8: Recurrent mutations in non-genic regions 
 

Chr St Sp Ref Var Sample Gene 
Distance 
To Gene ENCODE_ChromHMM Conservation_score 

1 80743586 80743586 C A AML12 ENSG00000217175 9080 13_Heterochrom/lo 0.000 
1 80743777 80743777 C T AML43 ENSG00000217175 9271 13_Heterochrom/lo 0.000 
1 175674904 175674904 T A AML43 LOC400796 0 12_Repressed 0.017 
1 175674914 175674914 A C AML05 LOC400796 0 12_Repressed 0.005 
1 199603019 199603019 C T AML40 TNNT2 0 13_Heterochrom/lo 0.001 
1 199603188 199603188 C T AML18 TNNT2 0 13_Heterochrom/lo 0.000 
1 207560587 207560587 G A AML25 ENSG00000219440 52396 13_Heterochrom/lo - 
1 207560745 207560745 A C AML20 ENSG00000219440 52554 13_Heterochrom/lo - 
1 216303921 216303921 T C AML28 ENSG00000201493 65838 13_Heterochrom/lo - 
1 216304035 216304035 G A AML43 ENSG00000201493 65724 13_Heterochrom/lo - 
1 240678783 240678783 G A AML28 PLD5 0 13_Heterochrom/lo 0.809 
1 240678902 240678902 G A AML45 PLD5 0 13_Heterochrom/lo 0.151 
2 2787616 2787616 C T AML08 LOC389024 235461 13_Heterochrom/lo - 
2 2787616 2787616 C T AML44 LOC389024 235461 13_Heterochrom/lo - 
2 23136138 23136138 G T AML10 ENSG00000222616 197893 13_Heterochrom/lo - 
2 23136226 23136226 C T AML36 ENSG00000222616 197981 13_Heterochrom/lo - 
2 23315322 23315322 C T AML48 KLHL29 143880 13_Heterochrom/lo - 
2 23315413 23315413 C T AML10 KLHL29 143789 13_Heterochrom/lo - 
2 143217115 143217115 T C AML29 KYNU 134421 13_Heterochrom/lo - 
2 143217232 143217232 A C AML50 KYNU 134304 13_Heterochrom/lo - 
2 158403247 158403247 A C AML44 ACVR1 0 13_Heterochrom/lo 0.000 
2 158403328 158403328 C A AML12 ACVR1 0 13_Heterochrom/lo 0.996 
2 215677037 215677037 C T AML46 ABCA12 0 11_Weak_Txn 0.032 
2 215677160 215677160 C T AML48 ABCA12 0 11_Weak_Txn 0.124 
3 21310539 21310539 C A AML20 VENTXP7 111682 13_Heterochrom/lo - 
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3 21310708 21310708 C A AML31 VENTXP7 111513 13_Heterochrom/lo - 
3 27043413 27043413 G A AML03 NEK10 83985 13_Heterochrom/lo - 
3 27043554 27043554 T C AML11 NEK10 83844 13_Heterochrom/lo - 
3 53488484 53488484 G T AML06 CACNA1D 15631 12_Repressed 0.000 
3 53488649 53488649 C G AML12 CACNA1D 15466 12_Repressed 0.000 
4 14719735 14719735 A - AML21 LOC100129903 0 13_Heterochrom/lo 0.000 
4 14719735 14719735 A G AML29 LOC100129903 0 13_Heterochrom/lo 0.000 
4 18022446 18022446 A G AML12 ENSG00000209956 163397 1_Active_Promoter - 
4 18022627 18022627 A T AML07 ENSG00000209956 163216 2_Weak_Promoter - 
4 23984368 23984368 G A AML51 ENSG00000222262 47528 13_Heterochrom/lo 0.001 
4 23984451 23984451 G T AML03 ENSG00000222262 47445 13_Heterochrom/lo 0.022 
4 31779477 31779477 G C AML28 LOC100130644 0 13_Heterochrom/lo 0.004 
4 31779598 31779598 G A AML34 LOC100130644 0 13_Heterochrom/lo 0.002 
4 76113392 76113392 G A AML09 DKFZP564O0823,uc003hih.1 0 13_Heterochrom/lo 0.000 
4 76113412 76113412 C A AML28 DKFZP564O0823,uc003hih.1 0 13_Heterochrom/lo 0.034 
4 99892327 99892327 G T AML44 ENSG00000174991 10855 13_Heterochrom/lo 0.012 
4 99892405 99892405 T C AML29 ENSG00000174991 10933 13_Heterochrom/lo 0.000 
4 144623658 144623658 A G AML40 GAB1 12929 12_Repressed 0.018 
4 144623720 144623720 C A AML08 GAB1 12991 12_Repressed 0.025 
5 29385295 29385295 T - AML06 LOC100130803 251175 13_Heterochrom/lo - 
5 29385298 29385298 T C AML49 LOC100130803 251172 13_Heterochrom/lo - 
5 45550440 45550440 G A AML02 HCN1 0 13_Heterochrom/lo 0.003 
5 45550574 45550574 C - AML45 HCN1 0 13_Heterochrom/lo 0.000 
5 116635650 116635650 C T AML23 LOC728342 143453 13_Heterochrom/lo - 
5 116635767 116635767 C T AML51 LOC728342 143336 13_Heterochrom/lo - 

5 140320477 140320477 T C AML21 

PCDHA1, PCDHA10, 
PCDHA11, PCDHA12, 
PCDHA13, PCDHA2, 
PCDHA3, PCDHA4, 
PCDHA5, PCDHA6, 
PCDHA7, PCDHA8, 
PCDHA9, PCDHAC1 0 13_Heterochrom/lo 0.814 
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5 140320536 140320536 G A AML06 

PCDHA1, PCDHA10, 
PCDHA11, PCDHA12, 
PCDHA13, PCDHA2, 
PCDHA3, PCDHA4, 
PCDHA5, PCDHA6, 
PCDHA7, PCDHA8, 
PCDHA9, PCDHAC1 0 13_Heterochrom/lo 0.971 

5 156250002 156250002 G A AML33 TIMD4 28941 13_Heterochrom/lo 0.000 
5 156250002 156250002 G A AML43 TIMD4 28941 13_Heterochrom/lo 0.000 
6 318610 318610 G A AML38 LOC730077 0 14_Repetitive/CNV 0.000 
6 318785 318785 G A AML39 LOC730077 0 14_Repetitive/CNV 0.000 
6 18875178 18875178 G T AML18 MIRN548A1 195088 13_Heterochrom/lo - 
6 18875323 18875323 A - AML02 MIRN548A1 195233 13_Heterochrom/lo - 
6 22698663 22698663 A G AML23 HDGFL1 19934 13_Heterochrom/lo 0.007 
6 22698699 22698699 T A AML06 HDGFL1 19970 13_Heterochrom/lo 0.874 
6 95328747 95328747 T C AML45 ENSG00000209311 114979 13_Heterochrom/lo - 
6 95328814 95328814 A G AML49 ENSG00000209311 115046 13_Heterochrom/lo - 
7 9440110 9440110 T G AML48 ENSG00000218135 181022 13_Heterochrom/lo - 
7 9440306 9440306 T A AML51 ENSG00000218135 180826 13_Heterochrom/lo - 
7 70789706 70789706 C G AML44 WBSCR17 0 13_Heterochrom/lo 0.003 
7 70789795 70789795 C G AML01 WBSCR17 0 13_Heterochrom/lo 0.000 
7 136384858 136384858 C T AML06 LOC100128744 24142 13_Heterochrom/lo 0.002 
7 136384880 136384880 C T AML30 LOC100128744 24120 13_Heterochrom/lo 0.058 
7 156474488 156474488 G A AML37 MNX1 15819 10_Txn_Elongation 0.001 
7 156474493 156474493 C T AML03 MNX1 15814 10_Txn_Elongation 0.000 
8 36074299 36074299 G T AML39 ENSG00000210631 180371 13_Heterochrom/lo - 
8 36074393 36074393 G A AML10 ENSG00000210631 180277 13_Heterochrom/lo - 
9 13363849 13363849 G A AML49 FLJ41200 32529 13_Heterochrom/lo 0.272 
9 13363866 13363866 G C AML11 FLJ41200 32512 13_Heterochrom/lo 0.002 
10 31544255 31544255 C T AML02 ENSG00000209675 44278 13_Heterochrom/lo 0.007 
10 31544410 31544410 C T AML07 ENSG00000209675 44123 13_Heterochrom/lo 0.002 
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10 56803960 56803960 A T AML20 PCDH15 0 13_Heterochrom/lo 0.009 
10 56804084 56804084 G A AML04 PCDH15 0 13_Heterochrom/lo 0.000 
10 84453341 84453341 G A AML35 NRG3 0 13_Heterochrom/lo 0.000 
10 84453471 84453471 G T AML43 NRG3 0 13_Heterochrom/lo 0.000 
10 127873288 127873288 A G AML30 ADAM12 0 13_Heterochrom/lo 0.000 
10 127873311 127873311 C T AML19 ADAM12 0 13_Heterochrom/lo 0.000 
11 117101176 117101176 C T AML37 DSCAML1 0 9_Txn_Transition 0.000 
11 117101343 117101343 A G AML01 DSCAML1 0 5_Strong_Enhancer 0.000 
11 117869938 117869938 T C AML06 MLL 0 11_Weak_Txn 0.005 
11 117870121 117870121 G C AML17 MLL 0 11_Weak_Txn 0.003 
11 131710591 131710591 C A AML49 HNT,NTM 0 13_Heterochrom/lo 0.000 
11 131710683 131710683 G A AML39 HNT,NTM 0 13_Heterochrom/lo 0.000 
12 5326141 5326141 C T AML39 LOC100133418 0 13_Heterochrom/lo 0.002 
12 5326326 5326326 G A AML16 LOC100133418 0 13_Heterochrom/lo 0.000 
12 14089388 14089388 C T AML23 GRIN2B 65069 13_Heterochrom/lo - 
12 14089532 14089532 G A AML29 GRIN2B 65213 13_Heterochrom/lo - 
12 96997823 96997823 G A AML06 LOC732096 323397 13_Heterochrom/lo - 
12 96997914 96997914 A - AML33 LOC732096 323488 13_Heterochrom/lo - 
12 125520708 125520708 C A AML40 ENSG00000214043 0 13_Heterochrom/lo 0.014 
12 125520889 125520889 G A AML29 ENSG00000214043 0 13_Heterochrom/lo 0.028 
13 18518150 18518150 C T AML44 ENSG00000218236 0 . 0.000 
13 18518170 18518170 G A AML33 ENSG00000218236 0 . 0.000 
13 55550363 55550363 T - AML06 HNF4GP1 77780 13_Heterochrom/lo - 
13 55550461 55550462 - T AML08 HNF4GP1 77879 13_Heterochrom/lo - 
14 53624173 53624173 G A AML37 ENSG00000219778 95710 13_Heterochrom/lo - 
14 53624180 53624180 C T AML50 ENSG00000219778 95717 13_Heterochrom/lo - 
14 78991968 78991968 T A AML23 NRXN3 0 13_Heterochrom/lo 0.020 
14 78992069 78992069 C T AML30 NRXN3 0 13_Heterochrom/lo 0.011 
14 81806925 81806925 C T AML17 ENSG00000210370 159042 11_Weak_Txn - 
14 81807121 81807121 G A AML38 ENSG00000210370 158846 11_Weak_Txn - 
15 24601542 24601543 - T AML43 GABRB3 0 13_Heterochrom/lo 0.000 
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15 24601667 24601667 G A AML20 GABRB3 0 13_Heterochrom/lo 0.000 
15 25047599 25047599 G A AML34 GABRG3 0 13_Heterochrom/lo 0.000 
15 25047792 25047792 C T AML27 GABRG3 0 13_Heterochrom/lo 0.002 
15 51192393 51192393 G A AML46 LOC645693 174345 13_Heterochrom/lo - 
15 51192438 51192438 G A AML15 LOC645693 174390 13_Heterochrom/lo - 
15 69244719 69244719 G A AML51 THSD4 0 5_Strong_Enhancer 1.000 
15 69244831 69244831 G A AML50 THSD4 0 7_Weak_Enhancer 0.023 
16 6129410 6129410 G A AML02 A2BP1 0 13_Heterochrom/lo 0.000 
16 6129458 6129458 C T AML30 A2BP1 0 13_Heterochrom/lo 0.000 
16 46232164 46232164 G C AML15 PHKB 0 . 0.587 
16 46232202 46232202 C T AML49 PHKB 0 . 0.679 
17 43672036 43672036 T A AML03 SKAP1 0 13_Heterochrom/lo 0.734 
17 43672126 43672126 C G AML04 SKAP1 0 13_Heterochrom/lo 0.004 
17 53256697 53256697 C T AML20 MRPS23 15143 13_Heterochrom/lo 0.000 
17 53256723 53256723 C T AML30 MRPS23 15117 13_Heterochrom/lo 0.005 
18 13606615 13606615 G A AML03 C18orf1 0 13_Heterochrom/lo 0.001 
18 13606633 13606633 C T AML31 C18orf1 0 13_Heterochrom/lo 0.004 
19 34569692 34569692 G A AML10 LOC284395 25868 13_Heterochrom/lo 0.000 
19 34569752 34569752 C A AML03 LOC284395 25808 13_Heterochrom/lo 0.000 
20 15371459 15371459 G A AML23 C20orf133,MACROD2 0 13_Heterochrom/lo 0.000 
20 15371644 15371644 C A AML14 C20orf133,MACROD2 0 13_Heterochrom/lo 0.000 
20 43250606 43250606 C T AML36 PI3 12007 13_Heterochrom/lo 0.103 
20 43250759 43250760 - C AML32 PI3 12161 13_Heterochrom/lo 0.000 
21 24117139 24117139 C A AML43 ENSG00000199698 390666 13_Heterochrom/lo - 
21 24117145 24117145 T C AML40 ENSG00000199698 390672 13_Heterochrom/lo - 
21 43545785 43545785 G A AML34 C21orf136 27220 12_Repressed 0.000 
21 43545886 43545886 C T AML33 C21orf136 27119 12_Repressed 0.009 
22 33530064 33530064 T G AML40 ENSG00000220899 212794 13_Heterochrom/lo - 
22 33530100 33530100 C T AML44 ENSG00000220899 212830 13_Heterochrom/lo - 
22 38398117 38398117 C T AML51 CACNA1I 0 13_Heterochrom/lo 0.000 
22 38398294 38398294 G A AML29 CACNA1I 0 13_Heterochrom/lo 0.001 
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Table S9: Mitochondrial mutations 
 
 
TCGA_id WGS_id chromosome_name start stop reference variant type 
TCGA-AB-2802  MT 13059 13059 C - DEL 
TCGA-AB-2802  MT 14767 14767 T C SNP 
TCGA-AB-2803  MT 7207 7207 G A SNP 
TCGA-AB-2811  MT 2779 2779 G A SNP 
TCGA-AB-2814  MT 7962 7962 T C SNP 
TCGA-AB-2817  MT 10493 10493 T C SNP 
TCGA-AB-2817  MT 1311 1311 A G SNP 
TCGA-AB-2817  MT 13116 13116 T C SNP 
TCGA-AB-2817  MT 3434 3434 T C SNP 
TCGA-AB-2819  MT 11810 11810 T C SNP 
TCGA-AB-2819  MT 530 530 T C SNP 
TCGA-AB-2820  MT 8103 8103 G A SNP 
TCGA-AB-2845  MT 1149 1149 G A SNP 
TCGA-AB-2859  MT 14767 14767 T C SNP 
TCGA-AB-2885  MT 8156 8156 G A SNP 
TCGA-AB-2886  MT 8066 8066 G A SNP 
TCGA-AB-2897  MT 3919 3919 G A SNP 
TCGA-AB-2900  MT 14964 14964 G A SNP 
TCGA-AB-2903  MT 7782 7782 A G SNP 
TCGA-AB-2904  MT 15014 15014 A C SNP 
TCGA-AB-2908  MT 1872 1872 A G SNP 
TCGA-AB-2908  MT 6721 6721 A G SNP 
TCGA-AB-2916  MT 14767 14767 T C SNP 
TCGA-AB-2919  MT 12256 12256 T G SNP 
TCGA-AB-2921  MT 651 651 A G SNP 
TCGA-AB-2927  MT 13370 13370 T C SNP 
TCGA-AB-2927  MT 13763 13763 T C SNP 
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TCGA-AB-2927  MT 9731 9731 T C SNP 
TCGA-AB-2931  MT 913 913 T C SNP 
TCGA-AB-2934  MT 15651 15651 G A SNP 
TCGA-AB-2935  MT 7622 7622 T C SNP 
TCGA-AB-2936  MT 9554 9554 G A SNP 
TCGA-AB-2937  MT 11462 11462 A G SNP 
TCGA-AB-2939  MT 7655 7655 T C SNP 
TCGA-AB-2939  MT 9968 9968 T C SNP 
TCGA-AB-2941  MT 13692 13692 A G SNP 
TCGA-AB-2943  MT 4598 4598 T C SNP 
TCGA-AB-2948  MT 8706 8706 T C SNP 
TCGA-AB-2955  MT 7920 7920 G A SNP 
TCGA-AB-3009 AML43 MT 3919 3919 G A SNP 
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Table S10: miRNA mutations 

Sample Chr Start Stop Ref Var Type miRNA 
TCGA-AB-2805 17 53763621 53763621 C G SNP MIRN142 
TCGA-AB-2807 17 53763624 53763624 T C SNP MIRN142 
TCGA-AB-2859 19 58931994 58931995 TT - DEL MIRN516B1 
TCGA-AB-2926 17 53763622 53763622 A G SNP MIRN142 
TCGA-AB-2972 13 106981565 106981565 G T SNP MIRN1267 
TCGA-AB-2977 X 144917082 144917082 G T SNP MIRN891A 
TCGA-AB-3002 17 27701282 27701282 C A SNP MIRN632 
TCGA-AB-3002 17 53763621 53763621 C G SNP MIRN142 
TCGA-AB-3002 17 53763624 53763624 T C SNP MIRN142 
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Table S11: Germline Variants 
   See separate file 
   https://tcga-data.nci.nih.gov/docs/publications/aml_2012/SupplementalTable11.xls
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Supplementary Table 12: Mutual Exclusivity and Co-Occurence 

a) All pairs of genes, gene groups, and cytogenetic risk categories that are exclusive with P < 0.05 using Fisher's exact 
test. A description of how Fisher's exact test was performed is available in the supplementary methods. Because pairs of 
cytogenetic categories are by definition fully exclusive, we do not include them in this table. 
 

Gene	
  /	
  Gene	
  Group	
  1	
   Gene	
  /	
  Gene	
  Group	
  2	
   Fisher's	
  p-­‐value	
  
Favorable	
   NPM1	
   2.07E-­‐06	
  
DNMT3A	
   Favorable	
   4.90E-­‐06	
  

Intermediate	
   PML-­‐RARA	
   1.27E-­‐05	
  
Intermediate	
   TP53	
   3.11E-­‐05	
  
Intermediate	
   MYH11-­‐CBFB	
   5.50E-­‐05	
  

NPM1	
   Unfavorable	
   3.26E-­‐04	
  
NPM1	
   RUNX1	
   1.26E-­‐03	
  

Intermediate	
   RUNX1-­‐RUNX1T1	
   2.16E-­‐03	
  
NPM1	
   PML-­‐RARA	
   5.13E-­‐03	
  
FLT3	
   TP53	
   5.83E-­‐03	
  

DNMT3A	
   PML-­‐RARA	
   7.24E-­‐03	
  
NPM1	
   TP53	
   7.25E-­‐03	
  
FLT3	
   RUNX1	
   9.35E-­‐03	
  

Intermediate	
   KIT	
   1.12E-­‐02	
  
Intermediate	
   Unknown	
   1.29E-­‐02	
  
Favorable	
   IDH2	
   1.32E-­‐02	
  
Favorable	
   RUNX1	
   1.32E-­‐02	
  
Favorable	
   IDH1	
   1.67E-­‐02	
  
PML-­‐RARA	
   Unfavorable	
   1.75E-­‐02	
  

MYH11-­‐CBFB	
   NPM1	
   2.82E-­‐02	
  
DNMT3A	
   MYH11-­‐CBFB	
   3.56E-­‐02	
  
FLT3	
   Unfavorable	
   3.73E-­‐02	
  

Favorable	
   TP53	
   4.10E-­‐02	
  
RUNX1	
   Unfavorable	
   4.31E-­‐02	
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FLT3	
   IDH2	
   4.42E-­‐02	
  
ABL1,DYRK4,EPHA2,EPHA3,JAK3,MST1R,OBSCN,PDGFRB,WEE1	
   FLT3	
   4.84E-­‐02	
  

 
 
b) All pairs of genes, gene groups, and cytogenetic risk categories that are co-occurring with P < 0.05 using Fisher's exact 
test. A description of how Fisher's exact test was performed is available in the supplement. Because pairs of cytogenetic 
categories are by definition fully exclusive, we do not include them in this table. 
 

Gene	
  /	
  Gene	
  Group	
  1	
   Gene	
  /	
  Gene	
  Group	
  2	
   Fisher's	
  
p-­‐value	
  

Favorable	
   PML-­‐RARA	
   9.10E-­‐12	
  
ADAM3A	
   uc003xne.1	
   1.21E-­‐11	
  

ENSG00000219705	
   PRMT2	
   1.21E-­‐11	
  
Intermediate	
   NPM1	
   1.08E-­‐09	
  
Favorable	
   MYH11-­‐CBFB	
   2.20E-­‐09	
  
ADAM3A	
   ADAM5P	
   1.41E-­‐08	
  
ADAM5P	
   uc003xne.1	
   1.41E-­‐08	
  
C15orf23	
   DISP2	
   1.55E-­‐08	
  
TP53	
   Unfavorable	
   3.15E-­‐08	
  

ENSG00000219705	
   S100B	
   2.32E-­‐07	
  
PRMT2	
   S100B	
   2.32E-­‐07	
  
DNMT3A	
   NPM1	
   6.28E-­‐07	
  
FLT3	
   NPM1	
   2.00E-­‐06	
  

Favorable	
   RUNX1-­‐RUNX1T1	
   4.51E-­‐06	
  
C15orf23	
   LOC100128885	
   1.21E-­‐05	
  
DISP2	
   LOC100128885	
   1.21E-­‐05	
  

DNMT3A	
   Intermediate	
   1.78E-­‐05	
  
ENSG00000219705	
   TP53	
   2.89E-­‐04	
  

PRMT2	
   TP53	
   2.89E-­‐04	
  
ASXL1	
   IDH2	
   3.50E-­‐04	
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ASXL1	
   RUNX1	
   3.50E-­‐04	
  
NF1	
   SUZ12	
   4.51E-­‐04	
  

BCR-­‐ABL1	
   MT-­‐ND5	
   8.98E-­‐04	
  
LOC728807	
   UGT2B17	
   8.98E-­‐04	
  

IDH2	
   RUNX1	
   1.17E-­‐03	
  
Intermediate	
   RUNX1	
   1.19E-­‐03	
  
DNMT3A	
   SMC3	
   1.23E-­‐03	
  
S100B	
   TP53	
   1.32E-­‐03	
  

DNMT3A	
   IDH1	
   1.62E-­‐03	
  
IDH2	
   MIR142	
   3.25E-­‐03	
  

Intermediate	
   MLL-­‐PTD	
   5.98E-­‐03	
  
ADAM5P	
   TP53	
   6.02E-­‐03	
  

KIT	
   MYH11-­‐CBFB	
   6.02E-­‐03	
  
KDM6A	
   RUNX1-­‐RUNX1T1	
   6.12E-­‐03	
  
Favorable	
   KIT	
   6.19E-­‐03	
  
BCR-­‐ABL1	
   Unfavorable	
   9.40E-­‐03	
  
MLL-­‐ELL	
   Unfavorable	
   9.40E-­‐03	
  
NPM1	
   PTPN11	
   1.29E-­‐02	
  

DNMT3A	
   FLT3	
   1.36E-­‐02	
  
PHF6	
   RUNX1	
   1.42E-­‐02	
  
STAG2	
   TET2	
   1.46E-­‐02	
  

DNMT3A	
   RPS6KA6	
   1.59E-­‐02	
  
DNAH9	
   TET2	
   1.95E-­‐02	
  

ENSG00000219705	
   Unfavorable	
   2.02E-­‐02	
  
PRMT2	
   Unfavorable	
   2.02E-­‐02	
  

GATA2,CBFB,ETV6,ETV3,GLI1,IKZF1,MYB,MYC,MLLT10-­‐CEP164	
   LOC100128885	
   2.18E-­‐02	
  
C15orf23	
   GATA2,CBFB,ETV6,ETV3,GLI1,IKZF1,MYB,MYC,MLLT10-­‐

CEP164	
  
2.18E-­‐02	
  

DISP2	
   GATA2,CBFB,ETV6,ETV3,GLI1,IKZF1,MYB,MYC,MLLT10-­‐
CEP164	
  

2.18E-­‐02	
  
IDH1	
   RPS6KA6	
   2.43E-­‐02	
  

LOC100130472	
   MYH11-­‐CBFB	
   2.52E-­‐02	
  
IDH2	
   Intermediate	
   2.53E-­‐02	
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KIT	
   RUNX1-­‐RUNX1T1	
   2.67E-­‐02	
  
DIS3	
   RUNX1	
   2.69E-­‐02	
  

MT-­‐CO3	
   RUNX1	
   2.69E-­‐02	
  
IDH2	
   SMG1	
   2.69E-­‐02	
  
RUNX1	
   SUZ12	
   2.69E-­‐02	
  
S100B	
   Unfavorable	
   3.19E-­‐02	
  

ABL1,DYRK4,EPHA2,EPHA3,JAK3,MST1R,OBSCN,PDGFRB,WEE1	
   RUNX1-­‐RUNX1T1	
   3.37E-­‐02	
  
PTPN11	
   STAG2	
   3.37E-­‐02	
  
IDH2	
   KRAS	
   3.48E-­‐02	
  
RUNX1	
   U2AF1	
   3.48E-­‐02	
  
IDH1	
   NPM1	
   3.79E-­‐02	
  

DNMT3A	
   MT-­‐CYB	
   3.79E-­‐02	
  
PHF6	
   WT1	
   4.34E-­‐02	
  

BCR-­‐ABL1	
   EZH2	
   4.45E-­‐02	
  
C8orf33	
   NF1	
   4.45E-­‐02	
  
C8orf33	
   SUZ12	
   4.45E-­‐02	
  
CACNA1B	
   HLA-­‐DRB1	
   4.45E-­‐02	
  
CACNA1B	
   LOC728807	
   4.45E-­‐02	
  
CACNA1E	
   CROCC	
   4.45E-­‐02	
  
CACNA1E	
   LOC728807	
   4.45E-­‐02	
  
CROCC	
   PTPRT	
   4.45E-­‐02	
  
DIS3	
   DNAH9	
   4.45E-­‐02	
  
DIS3	
   EZH2	
   4.45E-­‐02	
  
DIS3	
   MT-­‐CO3	
   4.45E-­‐02	
  
FCGBP	
   GPR128-­‐TFG	
   4.45E-­‐02	
  
FCGBP	
   SMG1	
   4.45E-­‐02	
  

GPR128-­‐TFG	
   NUP98-­‐NSD1	
   4.45E-­‐02	
  
GRIK2	
   LOC732248	
   4.45E-­‐02	
  
GRIK2	
   RPS6KA6	
   4.45E-­‐02	
  
GRIK2	
   SPEN	
   4.45E-­‐02	
  

LOC732248	
   RPS6KA6	
   4.45E-­‐02	
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MT-­‐CO2	
   NF1	
   4.45E-­‐02	
  
MT-­‐CO2	
   SUZ12	
   4.45E-­‐02	
  
PHACTR1	
   SPEN	
   4.45E-­‐02	
  
FLT3	
   Intermediate	
   4.48E-­‐02	
  

LOC100130472	
   NRAS	
   4.61E-­‐02	
  
IDH2	
   MLL-­‐PTD	
   4.88E-­‐02	
  

LOC100130472	
   NRAS	
   4.61E-­‐02	
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Table S13: Gene Fusions  
   See separate file 
   https://tcga-data.nci.nih.gov/docs/publications/aml_2012/SupplementalTable13.tsv 
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Table S14: Univariate analyses of DNA methylation changes (P < 0.05, FDR < 0.05 overall) 

 Hypermethylated vs. CD34+ cells Hypomethylated vs. CD34+ cells 
PML-RARA fusion (n=15) 9171 8314 

MYH11-CBFB fusion (n=11) 25537 11855 
RUNX1-RUNX1T1 fusion (n=7) 4679 3125 
MLL fusions (all partners, n=11) 7180 4319 

NUP98-NSD1 fusion (n=3) 716 51 
FLT3 mutation (n=55) 10669 5474 

NPM1 mutation (n=53) 15087 6144 
DNMT3A mutation (n=48) 11707 5520 

NPM1/FLT3/DNMT3A (n=17)  19934 14746 
TP53 mutation (n=15) 3484 2104 
IDH1 mutation (n=19) 14451 2583 
IDH2 mutation (n=18) 11871 2549 
TET2 mutation (n=16) 5931 2107 
WT1 mutation (n=11) 11395 1998 

CEBPA mutation (n=13) 8543 1216 
RUNX1 mutation (n=16) 7634 2139 

ASXL1 mutation (n=4) 0 0 
KDM6A mutation (n=4) 0 0 

Cohesin  mutations (n=24) 10380 3657 
Spliceosome mutations (n=22) 9503 2541 

   
 Hypermethylated vs. all normals Hypomethylated vs. all normals 

PML-RARA fusion (n=15) 88650 52844 
MYH11-CBFB fusion (n=11) 126070 63799 

RUNX1-RUNX1T1 fusion (n=7) 96867 51332 

MLL fusions (all partners, n=11) 
67794 59847 

NUP98-NSD1 fusion (n=3) 
82897 21427 

FLT3 mutation (n=55) 76678 54755 
NPM1 mutation (n=53) 79321 60692 

DNMT3A mutation (n=48) 61457 54002 
NPM1/FLT3/DNMT3A (n=17)  77877 83031 

TP53 mutation (n=15) 65381 64249 
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IDH1 mutation (n=19) 115089 36256 
IDH2 mutation (n=18) 119620 35519 
TET2 mutation (n=16) 69426 44652 
WT1 mutation (n=11) 106840 31397 

CEBPA mutation (n=13) 105028 27038 
RUNX1 mutation (n=16) 85092 38235 

ASXL1 mutation (n=4) 79913 21350 
KDM6A mutation (n=4) 46560 20838 

Cohesin  mutations (n=24) 78554 52895 
Spliceosome mutations (n=22) 79055 42305 
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Table S15: Multivariate analysis of DNA methylation changes (P < 0.05, FDR < 0.05) 

 Hypermethylated loci (fraction) Hypomethylated loci (fraction) 
   

AML patients (n=192) vs. donors 107336 (27.9%) 53183 (13.8%) 
   

PML-RARA fusion (n=15) 10085 (2.6%) 14673 (3.8%) 
MYH11-CBFB fusion (n=11) 7134 (1.9%) 25620 (6.7%) 

RUNX1-RUNX1T1 fusion (n=7) 2226 (0.6%) 12435 (3.2%) 
MLL fusions (all partners, n=11) 1745 (0.5%) 30212 (7.9%) 

NUP98-NSD1 fusion (n=3) 428 (0.1%) 127 (<0.1%) 
   

FLT3 mutation (n=55) 0 (0%) 0 (0%) 
NPM1 mutation (n=53) 4568 (1.2%) 35617 (9.3%) 

DNMT3A mutation (n=48) 1442 (0.4%) 39775 (10.4%) 
…with FLT3 mutation (n=21) 333 (0.1%) 1506 (0.4%) 

…and NPM1 mutation (n=17) 881 (0.2%) 190 (<0.1%) 
TP53 mutation (n=15) 3561 (0.9%) 45764 (11.9%) 

   
IDH1 mutation (n=19) 78798 (20.5%) 4119 (1.1%) 
IDH2 mutation (n=18) 72600 (18.9%) 540 (0.1%) 
TET2 mutation (n=16) 1534 (0.4%) 579 (0.2%) 
WT1 mutation (n=11) 11131 (2.9%) 360 (0.1%) 

CEBPA mutation (n=13) 16443 (4.3%) 1617 (0.4%) 
   

RUNX1 mutation (n=16) 104 (<0.1%) 132 (<0.1%) 
ASXL1 mutation (n=4) 31 (<0.1%) 12 (<0.1%) 

KDM6A mutation (n=4) 116 (<0.1%) 648 (0.2%) 
Cohesin  mutations (n=24) 52 (<0.1%) 19 (<0.1%) 

Spliceosome mutations (n=22) 0 (0%) 0 (0%) 
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Table S16: Univariate analyses of differentially methylated regions (p < 0.05, 1000nt+) 

 Hypermethylated vs. CD34+ cells Hypomethylated vs. CD34+ cells 
   

PML-RARA fusion (n=15) 261 152 
MYH11-CBFB fusion (n=11) 198 286 

RUNX1-RUNX1T1 fusion (n=7) 223 230 
MLL fusions (all partners, n=11) 60 60 

NUP98-NSD1 fusion (n=3) 205 39 
FLT3 mutation (n=55) 47 8 

NPM1 mutation (n=53) 66 27 
DNMT3A mutation (n=48) 12 1 

NPM1/FLT3/DNMT3A (n=17)  54 328 
TP53 mutation (n=15) 40 3 
IDH1 mutation (n=19) 55 1 
IDH2 mutation (n=18) 90 0 
TET2 mutation (n=16) 15 0 
WT1 mutation (n=11) 237 5 

CEBPA mutation (n=13) 242 1 
RUNX1 mutation (n=16) 55 1 

ASXL1 mutation (n=4) 24 0 
KDM6A mutation (n=4) 13 2 

Cohesin  mutations (n=24) 50 10 
Spliceosome mutations (n=22) 61 0 

   
 Hypermethylated vs. all normals Hypomethylated vs. all normals 

   
PML-RARA fusion (n=15) 1294 315 

MYH11-CBFB fusion (n=11) 864 246 
RUNX1-RUNX1T1 fusion (n=7) 1694 717 
MLL fusions (all partners, n=11) 751 497 

NUP98-NSD1 fusion (n=3) 1804 112 
FLT3 mutation (n=55) 921 195 

NPM1 mutation (n=53) 911 346 
DNMT3A mutation (n=48) 503 205 

NPM1/FLT3/DNMT3A (n=17)  326 861 
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TP53 mutation (n=15) 1057 85 
IDH1 mutation (n=19) 1414 23 
IDH2 mutation (n=18) 2737 27 
TET2 mutation (n=16) 635 26 
WT1 mutation (n=11) 2603 103 

CEBPA mutation (n=13) 2672 60 
RUNX1 mutation (n=16) 1851 39 

ASXL1 mutation (n=4) 1830 49 
KDM6A mutation (n=4) 1366 547 

Cohesin  mutations (n=24) 1143 288 
Spliceosome mutations (n=22) 1547 74 
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Table S17: The 4 subnetworks identified by HotNet.  
For each gene, the number in parentheses indicates the number of patients with an alteration in the gene. For 
pathway/protein complex enrichments, the significance of the overlap between genes in the subnetwork and those in the 
pathway/protein complex is reported (p-values are from a hypergeometric test with Bonferroni correction for multiple 
hypotheses). 

 
 

KEGG PATHWAYS ENRICHMENTS PROTEIN COMPLEXES (PINdb) 
ENRICHMENTS SUBNETWORK 

Name p-value Name p-value 

SMC1A(7), CYLD(1), WAPAL(1), RAD21(5), STAG2(6), 
SMC3(7), PDS5B(1) Cell cycle 10-3 

cohesin-2 
SNF2h/cohesin 
cohesin-1 

9x10-7 
6x10-5 
2x10-4 

DNMT3B(2), EZH2(3), DNMT3A(51), EED(2), MYC(1), 
DNMT1 (1)  

Cysteine and methionine 
metabolism 9x10-4   

RARA(16), TCF4(1), HDAC3(1), SUMO2(1), THRB(1), 
RUNX1(26), RUNX1T1(8), PML(16), Acute myeloid leukemia 10-3   

MLL3(2), E2F6(1), KDM6A(4), LEO1(1), MLL2(1), 
CDC73(1), MLL(20)   PTIP HMT 

hPAF 
2x10-4 
4x10-2 
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Table S18. List of genes in each of the manually curated functional gene groups. 

Functional gene group Genes in the group 
Spliceosome CSTF2T, DDX1, DDX23, DHX32, HNRNPK, METTL3, PLRG1, PRPF3, 

PRPF8, RBMX, SF3B1, SNRNP200, SRRM2, SRSF6, SUPT5H, TRA2B, 
U2AF1, U2AF1L4, U2AF2 

Cohesin complex SMC1A, SMC3, SMC5, STAG2, RAD21 
MLL-X fusions MLL-ELL, MLL-MLLT4, MLL-MLLT3, MLLT10-MLL 
Other myeloid transcription 
factors 

GATA2, CBFB, ETV6, ETV3, GLI1, IKZF1, MYB, MYC, MLLT10-CEP164 

Other epigenetic modifiers ARID4B, ASXL2, ASXL3, BRPF1, CBX5, CBX7, EED, HDAC2, HDAC3, 
JMJD1C, KAT6B, KDM2B, KDM3B, MLL2, MLL3, MTA2, PRDM9, PRDM16, 
RBBP4, SAP130, SCML2, SUDS3, SUZ12, ZBTB33, ZBTB7B, CREBBP-
KAT6A, RPN1-MECOM, RUNX1-MECOM 

Other Tyrosine Kinase ABL1, DYRK4, EPHA2, EPHA3, JAK3, MST1R, OBSCN, PDGFRB, WEE1 
Serine/Threonine Kinase ACVR2B, ADRBK1, AKAP13, BUB1, CPNE3, DCLK1, MAPK1, YLK2, 

MYO3A, NRK, PRKCG, RPS6KA6, SMG1, STK32A, STK33, STK36, TRIO, 
TTBK1, WNK3, WNK4 

Protein tyrosine phosphatase PTPN11, PTPRT, PTPN14 
RAS protein KRAS, NRAS 
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Table S19. Pairs of genes with significant (p < 0.04) exclusivity (a) and co-occurrence (b) for all genes and gene 
groups with at least 4 mutations.  

We removed all three cases of significant co-occurrence where the total number of co-occurring mutations between a pair 
of genes was two or less. We also calculated the co-occurrence and exclusivity of cytogenetic risk (favorable, 
intermediate, unfavorable) with genes and gene groups, and included the top four interactions. Highlighted rows indicate 
pairs with FDR < 0.1 according to the Benjamini-Hochberg-Yekutieli procedure. A graphical representation of this table is 
shown in Figure 3. 

a) Significantly exclusive pairs 
 
Gene 1 Gene 2 p-value 
NPM1 RUNX1 1.80x10-3 
PML-RARA NPM1 5.13x10-3 
FLT3 TP53 5.83x10-3 
PML-RARA DNMT3A 7.24x10-3 
NPM1 TP53 7.25x10-3 
FLT3 RUNX1 1.28x10-2 
KRAS/NRAS FLT3 1.93x10-2 
FLT3 Ser/Thr kinases 1.93x10-2 
MLL-X 
fusions 

NPM1 2.82x10-2 

NPM1 MYH11-CBFB 2.82x10-2 
MLL-X 
fusions 

DNMT3A 3.56x10-2 

DNMT3A MYH11-CBFB 3.56x10-2 
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b) Significantly co-occurring pairs 

 
Gene 1 Gene 2 p-value 
PML-RARA Favorable 9.10x10-12 
NPM1 Intermediate 1.08x10-9 
Favorable MYH11-CBFB 2.20x10-9 
TP53 Unfavorable 3.15x10-8 
DNMT3A NPM1 6.28x10-7 
FLT3 NPM1 2.00x10-6 
RUNX1-RUNX1T1 Favorable 4.51x10-6 
ASXL1 RUNX1 2.81x10-4 
ASXL1 IDH2 3.50x10-4 
RUNX1 IDH2 8.13x10-4 
DNMT3A IDH1 1.62x10-3 
MYH11-CBFB KIT 6.02x10-3 
Cohesin NPM1 6.32x10-3 
RUNX1 PHF6 1.04x10-2 
Cohesin PTPs 1.06x10-2 
DNMT3A Cohesin 1.19x10-2 
Ser/Thr kinases Spliceosome 1.28x10-2 
DNMT3A FLT3 1.36x10-2 
NPM1 PTPs 1.85x10-2 
MLLT10-PICALM TET1 1.99x10-2 
RUNX1-RUNX1T1 KIT 2.67x10-2 
Cohesin FLT3 2.72x10-2 
Ser/Thr kinases TET2 3.11x10-2 
RUNX1-RUNX1T1 Other Tyr kinases 3.37x10-2 
NPM1 IDH1 3.79x10-2 
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Table S20. Small RNA annotation priorities.  

 
For small RNA sequencing, the table shows annotation priorities that are used to resolve multiple database matches for a 
single alignment location and multiple alignment locations for a read.  
 
Priority Annotation type Database 
1 
2 
3 
4 
 
5 
 

mature strand 
star strand 
precursor miRNA 
stemloop, from 1 to 6 bases outside the mature 
strand, between the mature and star strands 
"unannotated", any region other than the mature 
strand in miRNAs where no star strand is 
annotated 

miRBase v16 

6 
7 
8 
9 
10 
11 
12 

snoRNA 
tRNA 
rRNA 
snRNA 
scRNA 
srpRNA 
Other RNA repeats  

UCSC small RNAs, 
RepeatMasker 

13 
14 
15 
16,17 

coding exons with zero annotated CDS region 
length 
3' UTR 
5' UTR 
coding exon, intron 

UCSC genes 
 

18 
19 
20 
21 
22 
23 

LINE  
SINE 
LTR 
Satellite 
RepeatMasker DNA 
RepeatMasker Low complexity 

UCSC 
RepeatMasker  
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24 
25 
26 

RepeatMasker Simple Repeat 
RepeatMasker Other 
RepeatMasker Unknown 
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