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By now, it’s almost old news: 
big data will transform med-

icine. It’s essential to remember, 
however, that data by themselves 
are useless. To be useful, data 
must be analyzed, interpreted, and 
acted on. Thus, it is algorithms — 

not data sets — that will prove 
transformative. We believe, there-
fore, that attention has to shift to 
new statistical tools from the 
field of machine learning that 
will be critical for anyone practic-
ing medicine in the 21st century.

First, it’s important to under-
stand what machine learning is 
not. Most computer-based algo-
rithms in medicine are “expert 
systems” — rule sets encoding 
knowledge on a given topic, which 
are applied to draw conclusions 

ry agencies will pay particular at-
tention to preclinical safety and 
toxicity studies and assessments 
of unexpected adverse events dur-
ing clinical trials and after licen-
sure. The case for licensure may 
be established through tradition-
al clinical efficacy trials, but de-
clining case counts or an urgent 
need for intervention may neces-
sitate a different pathway. Alter-
natives include using efficacy data 
from studies in animals combined 
with human immunogenicity data 
or bridging to an as-yet-undefined 
immune correlate of protection. 
Human challenge studies have 
been proposed in order to augment 
information from efficacy trials, 
assist in exploring immune cor-
relates of protection, or generate 
efficacy data if natural transmis-
sion substantially declines. In the 
absence of a clear understanding 
of the frequency of adverse neu-
rologic outcomes or the persis-
tence of ZIKV in biologic fluids, 
however, human ZIKV challenge 
is ethically complex.

Other flavivirus vaccines have 
been licensed, including those 
against yellow fever (live attenu-
ated), Japanese encephalitis (inac-

tivated, live chimeric, live atten-
uated), tickborne encephalitis 
(inactivated), and dengue (live chi-
meric). Some have validated surro-
gates of protection, and all are 
based on neutralizing antibody. A 
neutralizing antibody titer of 1 in 
10 is the surrogate of protection 
for the Japanese and tickborne 
encephalitis vaccines; for yellow 
fever, the titer is between 1 in 10 
and 1 in 50. Preclinical ZIKV 
studies suggest that a titer of 1 in 
10 for mice and approximately 1 in 
100 for nonhuman primates pro-
tected against ZIKV challenge.1,2 
If these figures translate to hu-
mans, developing a ZIKV vaccine 
is very feasible.

The time required to develop a 
safe, efficacious ZIKV vaccine will 
be determined by prior experience 
with the selected technology, the 
continuation of outbreaks, and the 
required scale-up of manufactur-
ing. Ultimately, developing, licens-
ing, and deploying a vaccine ca-
pable of affecting the current 
epidemic will require seamless 
coordination among developers, 
regulatory agencies, the WHO, and 
national health authorities, along 
with a robust monetary commit-

ment from governments and fund-
ing agencies.
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about specific clinical scenarios, 
such as detecting drug interac-
tions or judging the appropriate-
ness of obtaining imaging. Ex-
pert systems work the way an 
ideal medical student would: they 
take general principles about med-
icine and apply them to new pa-
tients.

Machine learning, conversely, 
approaches problems as a doctor 
progressing through residency 
might: by learning rules from data. 
Starting with patient-level observa-
tions, algorithms sift through vast 
numbers of variables, looking for 
combinations that reliably pre-
dict outcomes. In one sense, this 
process is similar to that of tra-
ditional regression models: there 
are outcomes, covariates, and sta-
tistical functions linking the two. 
But where machine learning shines 
is in handling enormous numbers 
of predictors — sometimes, re-
markably, more predictors than 
observations — and combining 
them in nonlinear and highly in-
teractive ways.1 This capacity al-
lows us to use new kinds of data, 
whose sheer volume or complex-
ity would previously have made 
analyzing them unimaginable.

Consider a chest radiograph. 
Some radiographic features might 
predict an important outcome, 
such as death. In a standard sta-
tistical model, we might use the 
radiograph’s interpretation — 
“normal,” “atelectasis,” “effusion” 
— as a variable. But instead, why 
not let the data speak for them-
selves? Leveraging dramatic ad-
vances in computational power, 
digital pixel matrixes underlying 
radiographs become millions of 
individual variables. Algorithms 
then go to work, clustering pixels 
into lines and shapes and ulti-
mately learning contours of frac-

ture lines, parenchymal opacities, 
and more. Even traditional insur-
ance claims data can take on a 
new life: diagnostic codes trace an 
intricate, dynamic picture of pa-
tients’ medical histories, far richer 
than the static variables for coex-

isting conditions used in standard 
statistical models.

Of course, letting the data speak 
for themselves can be problematic. 
Algorithms might “overfit” pre-
dictions to spurious correlations 
in the data, or multiple collinear, 
correlated predictors could pro-
duce unstable estimates. Either 
possibility can lead to overly op-
timistic estimates of the accuracy 
of a model and exaggerated claims 
about real-world performance. 
These concerns are serious and 
must be addressed by testing 
models on truly independent vali-
dation data sets, from different 
populations or periods that played 
no role in model development. In 
this way, problems in the model-
fitting stage, whatever their cause, 
will show up as poor performance 
in the validation stage. This prin-
ciple is so important that in many 
data-science competitions, valida-
tion data are released only after 
teams upload their final algo-
rithms built on another publicly 
available data set.

Another key issue is the quan-
tity and quality of input data. 

Machine learning algorithms are 
highly data hungry, often re-
quiring millions of observations 
to reach acceptable performance 
levels.2 In addition, biases in 
data collection can substantially 
affect both performance and gen-

eralizability. Lactate might be a 
good predictor of the risk of 
death, for example, but only a 
small, nonrepresentative sample 
of patients have their lactate levels 
checked. Private companies spend 
enormous resources to amass 
high-quality, unbiased data to 
feed their algorithms, and exist-
ing data in electronic health rec-
ords (EHRs) or claims databases 
need careful curation and pro-
cessing to become usable.

Finally, machine learning does 
not solve any of the fundamental 
problems of causal inference in 
observational data sets. Algo-
rithms may be good at predict-
ing outcomes, but predictors are 
not causes.3 The usual common-
sense caveats about confusing cor-
relation with causation apply; in-
deed, they become even more 
important as researchers begin 
including millions of variables in 
statistical models.

Machine learning has become 
ubiquitous and indispensable for 
solving complex problems in 
most sciences. In astronomy, al-
gorithms sift through millions of 

Machine learning has become ubiquitous 
and indispensable for solving complex  
problems in most sciences. The same  
methods will open up vast new possibilities 
in medicine.
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images from telescope surveys to 
classify galaxies and find super-
novas. In biomedicine, machine 
learning can predict protein struc-
ture and function from genetic 
sequences and discern optimal 
diets from patients’ clinical and 
microbiome profiles. The same 
methods will open up vast new 
possibilities in medicine. A strik-
ing example: algorithms can read 
cortical activity directly from the 
brain, transmitting signals from 
a paralyzed human’s motor cor-
tex to hand muscles and restor-
ing motor control.4 These advanc-
es would have been unimaginable 
without machine learning to pro-
cess real-time, high-resolution 
physiological data.

Increasingly, the ability to 
transform data into knowledge 
will disrupt at least three areas of 
medicine. First, machine learning 
will dramatically improve the abil-
ity of health professionals to es-
tablish a prognosis. Current prog-
nostic models (e.g., the Acute 
Physiology and Chronic Health 
Evaluation [APACHE] score and 
the Sequential Organ Failure As-
sessment [SOFA] score) are re-
stricted to only a handful of vari-
ables, because humans must enter 
and tally the scores. But data could 
instead be drawn directly from 
EHRs or claims databases, allow-
ing models to use thousands of 
rich predictor variables. Does do-
ing so lead to better predictions? 
Early evidence from our own on-
going work, using machine learn-
ing to predict death in patients 
with metastatic cancer, provides 
some indication: we can precisely 
identify large patient subgroups 
with mortality rates approaching 
100% and others with rates as low 
as 10%. Predictions are driven by 

fine-grained information cutting 
across multiple organ systems: 
infections, uncontrolled symp-
toms, wheelchair use, and more. 
Better estimates could transform 
advance care planning for patients 
with serious illnesses, who face 
many agonizing decisions that 
depend on duration of survival. 
We predict that prognostic algo-
rithms will come into use in the 
next 5 years — although prospec-
tive validation will take several 
more years of data collection.

Second, machine learning will 
displace much of the work of ra-
diologists and anatomical pathol-
ogists. These physicians focus 
largely on interpreting digitized 
images, which can easily be fed 
directly to algorithms instead. 
Massive imaging data sets, com-
bined with recent advances in 
computer vision, will drive rapid 
improvements in performance, 
and machine accuracy will soon 
exceed that of humans. Indeed, 
radiology is already partway 
there: algorithms can replace a 
second radiologist reading mam-
mograms5 and will soon exceed 
human accuracy. The patient-
safety movement will increasing-
ly advocate the use of algorithms 
over humans — after all, algo-
rithms need no sleep, and their 
vigilance is the same at 2 a.m. as 
at 9 a.m. Algorithms will also 
monitor and interpret streaming 
physiological data, replacing as-
pects of anesthesiology and criti-
cal care. The time scale for these 
disruptions is years, not decades.

Third, machine learning will 
improve diagnostic accuracy. A 
recent Institute of Medicine report 
highlighted the alarming frequen-
cy of diagnostic errors and the 
lack of interventions to reduce 

them. Algorithms will soon gen-
erate differential diagnoses, sug-
gest high-value tests, and reduce 
overuse of testing. This disruption 
will happen more slowly, over the 
next decade, for three reasons: 
first, the standard for diagnosis 
is unclear in many conditions 
(e.g., sepsis, rheumatoid arthri-
tis) — unlike binary judgments 
in radiology or pathology (e.g., 
malignant or benign) — making 
it harder to train algorithms. Sec-
ond, high-value EHR data are of-
ten stored in unstructured for-
mats that are inaccessible to 
algorithms without layers of pre-
processing. Finally, models need 
to be built and validated individ-
ually for each diagnosis.

Clinical medicine has always 
required doctors to handle enor-
mous amounts of data, from 
macro-level physiology and be-
havior to laboratory and imaging 
studies and, increasingly, “omic” 
data. The ability to manage this 
complexity has always set good 
doctors apart from the rest. Ma-
chine learning will become an 
indispensable tool for clinicians 
seeking to truly understand their 
patients. As patients’ conditions 
and medical technologies become 
more complex, the role of machine 
learning will grow, and clinical 
medicine will be challenged to 
grow with it. As in other indus-
tries, this challenge will create 
winners and losers in medicine. 
But we are optimistic that patients, 
whose lives and medical histories 
shape the algorithms, will emerge 
as the biggest winners as ma-
chine learning transforms clinical 
medicine.
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