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A pproximately 6000 cases of acute lymphoblastic leukemia (ALL) 
are diagnosed in the United States annually; half the cases occur in chil­
dren and teenagers. In the United States, ALL is the most common cancer 

among children and the most frequent cause of death from cancer before 20 years 
of age.1,2 Presenting symptoms of ALL include bruising or bleeding due to thrombo­
cytopenia, pallor and fatigue from anemia, and infection caused by neutropenia. 
Leukemic infiltration of the liver, spleen, lymph nodes, and mediastinum is com­
mon at diagnosis. Extramedullary leukemia in the central nervous system (CNS) 
or testicles may require specific modifications in therapy.

Since the first description in 1948 of temporary remission of leukemia induced 
by chemotherapy,3 pediatric ALL has provided a model for improvement of survival 
among patients with cancer by progressive improvements in the efficacy of multi­
agent chemotherapy regimens and by stratification of treatment intensity according 
to the clinical features of the patient, the biologic features of the leukemia cells, 
and the early response to treatment, all of which are predictive of the risk of re­
lapse. Collectively, these advances have increased the survival rate from less than 
10% in the 1960s to 90% today (Fig. 1). New discoveries are revealing the promise 
and challenges of precision-medicine strategies that integrate leukemia genomics 
into contemporary therapy.

Epidemiol o gy a nd R isk Fac t or s

In the United States, the incidence of ALL is about 30 cases per million persons 
younger than 20 years of age, with the peak incidence occurring at 3 to 5 years of age.4 
The incidence varies significantly according to race and ethnic group: 14.8 cases per 
million blacks, 35.6 cases per million whites, and 40.9 cases per million Hispan­
ics.5 Childhood ALL develops more frequently in boys than in girls (male:female 
ratio, 55% to 45%).

Several genetic factors (most prominently Down’s syndrome6) are associated 
with an increased risk of ALL, but most patients have no recognized inherited 
factors. Genomewide association studies have identified polymorphic variants in 
several genes (including ARID5B, CEBPE, GATA3, and IKZF1) that are associated with 
an increased risk of ALL or specific ALL subtypes.7-9 Rare germline mutations in 
PAX5 and ETV6 are linked to familial ALL.10,11 Few environmental risk factors are 
associated with ALL in children. Increased rates of the disease have been linked 
to exposure to radiation and certain chemicals, but these associations explain only 
a very small minority of cases.

Gene tic B a sis  of A LL

ALL comprises multiple entities with distinct constellations of somatic genetic 
alterations (Fig. 2).12 These genetic alterations include aneuploidy (changes in chro­
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mosome number), chromosomal rearrangements 
that deregulate gene expression or result in ex­
pression of chimeric fusion proteins, deletions and 
gains of DNA, and DNA sequence mutations.13 On 
average, childhood ALL genomes contain only 
10 to 20 nonsilent coding mutations at the time 
of diagnosis and about twice as many at the time 
of relapse.14 Many mutations perturb key cellular 
processes, including the transcriptional regulation 
of lymphoid development and differentiation; 
cell-cycle regulation; the TP53–retinoblastoma 
protein tumor-suppressor pathway; growth factor 
receptor, Ras, phosphatidylinositol 3-kinase, and 
JAK–STAT signaling; nucleoside metabolism; 
and epigenetic modification. Perturbation of the 
latter two processes is common at relapse.14,15

ALL may be of B-cell precursor or T-cell lin­
eage. In 25 to 30% of children with B-cell ALL, 
leukemic cells have high hyperdiploidy (>50 
chromosomes) due to nonrandom chromosome 
gains. This subtype is associated with an excel­
lent prognosis. Hypodiploidy (<44 chromosomes) 
occurs in 2 to 3% of children with B-cell ALL 
and is a strong negative prognostic factor.16 Low 
hypodiploidy (30 to 39 chromosomes), which is 
associated with the presence of TP53 mutations 
that are frequently inherited, is a manifestation 
of the Li–Fraumeni syndrome.17

Chromosomal translocations and intrachro­

mosomal rearrangements are early, possibly initi­
ating events in leukemogenesis. Several can be 
detected in neonatal blood samples years before 
there are clinical manifestations of leukemia.18 
These translocations and rearrangements are usu­
ally present in all leukemic cells, are retained at 
relapse,14,19 and with additional genetic alterations, 
induce leukemia in experimental model systems.

There are two functional classes of transloca­
tions. The first class relocates oncogenes into 
regulatory regions of actively transcribed genes, 
causing dysregulated expression of an intact pro­
tein. Examples include translocations that bring 
C-MYC under control of the immunoglobulin heavy-
chain (IGH) or light-chain (IGK and IGL) gene en­
hancers in Burkitt’s lymphoma and leukemia, 
rearrangement of the cytokine receptor–like fac­
tor 2 (CRLF2) and erythropoietin receptor (EPOR) 
genes to IGH and IGK in B-cell ALL,20,21 and jux­
taposition of the transcription factors TLX1 and 
TLX3 to T-cell receptor (TCR) loci in T-cell ALL.22

The second major class of translocations jux­
taposes two genes to encode a chimeric protein 
that has distinct functions from the proteins 
from which it is derived. An important example 
is the ETV6-RUNX1 fusion, which fuses two hema­
topoietic transcription factors; it is observed in 
one quarter of children with ALL. Other impor­
tant examples include TCF3-PBX1, the t(9;22)

Figure 1. Overall Survival among Children with Acute Lymphoblastic Leukemia (ALL) Who Were Enrolled in Chil-
dren’s Cancer Group and Children’s Oncology Group Clinical Trials, 1968–2009.
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(q34;q11.2) translocation that results in forma­
tion of the Philadelphia (Ph) chromosome, and 
chromosomal rearrangements involving the chro­
mosome 11q23 mixed­lineage leukemia (MLL) 
gene. The Ph chromosome encodes BCR­ABL1, 
an activated tyrosine kinase. MLL (KMT2A) en­
codes a histone methyltransferase that is involved 
in epigenetic regulation of blood­cell develop­
ment. More than 70 different translocations tar­
get MLL, creating fusion proteins that mediate 
aberrant self­renewal of hematopoietic progeni­
tors.23 MLL translocations are particularly com­
mon in ALL that develops before 1 year of age 
(75% of cases). MLL­rearranged leukemias have 
very few additional somatic mutations, particu­
larly in infants.24

Genomic profiling and sequencing studies have 
identified additional subtypes of ALL. These in­
clude cases with deregulation of the transcription 
factor gene ERG25,26 and cases with complex intra­
chromosomal amplification of chromosome 21.27

In several subtypes of ALL, there is no single 
defining chromosomal alteration, but these sub­
types are defined by other pathological or ge­
nomic features. For example, early T­cell precur­
sor ALL is an aggressive stem­cell and progenitor 
leukemia that has a distinct immunophenotype 
and genetic alterations targeting transcription 
factors, signaling pathways, and epigenetic reg­
ulation.28,29 Patients with Ph­like ALL have a 
leukemic­cell gene­expression profile that is 
similar to that in patients with Ph­positive ALL, 

Figure 2. Proposed Sequential Acquisition of Genetic Alterations Contributing to the Pathogenesis and Relapse of ALL.

As shown in Panel A, either common inherited variants or, rarely, deleterious germline mutations confer a predispo-
sition to ALL. Initiating lesions, commonly translocations, are acquired in a lymphoid progenitor. Secondary se-
quence mutations and structural genetic alterations contribute to an arrest in lymphoid development and perturba-
tion of multiple cellular pathways, resulting in clinically manifest leukemia. PI3K denotes phosphatidylinositol 
3-kinase. As shown in Panel B, ALL is commonly genetically polyclonal at diagnosis. Initial therapy suppresses or 
eliminates more proliferative predominant clones, leaving subclones that harbor or acquire mutations that confer 
resistance to specific chemotherapeutic agents. Less commonly, relapse clones share no genetic alterations with 
 diagnosis clones and probably are a second leukemia in persons with a genetic predisposition.
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but they do not have BCR-ABL1 and harbor a 
diverse range of genetic alterations that activate 
tyrosine kinase signaling.30 The most common 
of these alterations are fusions that involve 
“ABL-class” kinases (ABL1, ABL2, CSF1R, and 
PDGFRB), which can be targeted with ABL1 in­
hibitors such as imatinib and dasatinib, and 
fusions, mutations, or deletions that activate 
JAK–STAT signaling (including rearrangements 
of JAK2, CRLF2, EPOR, and mutations of JAK1, 
JAK2, and JAK3 and the interleukin-7 receptor).

With the exception of MLL-rearranged leuke­
mia in infants, each of these subtypes typically 
has multiple additional genetic alterations. These 
alterations commonly target genes encoding pro­
teins involved in cell signaling, tumor-suppressor 
functions, and lymphoid differentiation. The two 
most common target genes governing B-lymphoid 
development are PAX5 (mutated in 35% of cases of 
ALL in children) and IKZF1 (mutated in 15%).25,31

Pro gnos tic Fac t or s

Factors that are predictive of an increased or a de­
creased chance of cure are considered when deci­
sions are made about the intensity of chemothera­
py and the selection of patients in first remission 
for allogeneic hematopoietic-cell transplantation 
(Table  1). Major prognostic factors include the 
clinical features that are present at diagnosis, bio­
logic and genetic features of leukemia cells, and 
early response to treatment.

Clinical Features

The patient’s age and initial white-cell count are 
predictive of outcome, with older age or a higher 
white-cell count portending a worse prognosis. 
A consensus conference defined “standard risk” 
(age 1 to 9.99 years and initial white-cell count 
of <50,000 per cubic millimeter) and “high risk” 
(age ≥10 years, initial white-cell count ≥50,000 per 
cubic millimeter, or both) ALL subgroups compris­
ing, respectively, about two thirds and one third of 
children with B-cell lineage ALL.32 Infants young­
er than 1 year are a special subgroup of patients 
with worse outcomes.

Age and initial white-cell count have limited 
prognostic importance in T-cell ALL. Several sub­
types of ALL occur more frequently in certain 
races and ethnic groups, including TCF3-PBX1 ALL 
in blacks33 and CRLF2-rearranged ALL in Hispan­
ics.34 Thus, inherited genetic variations are im­
portant in the pathogenesis of ALL.

Immunophenotype

The cell-surface and cytoplasmic expression of 
markers of lineage (immunophenotype) classifies 
childhood ALL into precursor B-cell (85%) or T-cell 
(15%) subgroups that are reminiscent of normal 
stages of lymphoid maturation. Patients with 
Burkitt’s lymphoma or leukemia have a mature 
B-cell immunophenotype, with expression of cell-
membrane immunoglobulin, rearrangement of the 
MYC oncogene, and an aggressive but curable 
clinical course. Many mutations that are linked 
to leukemogenesis target genes that regulate 
normal B-cell or T-cell differentiation, arresting 
differentiation.35,36

Patients with T-cell ALL are often male, black, 
older and less likely to be Hispanic than patients 
with B-cell ALL, have higher initial white-cell 
counts than patients with B-cell ALL, and have 
mediastinal lymph node and CNS involvement (Ta­
ble  2). Historically, survival among children with 
T-cell ALL was inferior to that among children 
with B-cell ALL. With the use of more intensive 
therapy, this difference has narrowed substan­
tially.37 Some of the preponderance of T-cell ALL 
among boys and young men may be due to spe­
cific mutations that target X-chromosome genes.38,39

Biologic and Genetic Features

Several genetic alterations are associated with 
the outcome in children with ALL. High hyper­
diploidy and the cryptic t(12;21) encoding ETV6-
RUNX1 are associated with a favorable outcome. 
Hypodiploidy with less than 44 chromosomes,16 
MLL rearrangement,40 BCR-ABL1,41 Ph-like ALL,30 
CRLF2 rearrangement,34 intrachromosomal am­
plification of chromosome 21,42 and early T-cell 
precursor ALL29 are associated with high-risk 
clinical features or a poor outcome.

Alterations of IKZF1, which encodes the lym­
phoid transcription factor Ikaros, are common 
in Ph-positive and Ph-like ALL. These alterations 
are also associated with a poor outcome.43,44

Early Response to Treatment

The time required to eliminate the bulk leuke­
mic-cell population to undetectable levels is the 
single most powerful prognostic factor in ALL in 
children.45,46 Submicroscopic levels of minimal 
residual disease in ALL (1 leukemia cell per 104 to 
105 normal cells) can be measured by means of 
polymerase-chain-reaction amplification of clo­
notypic IGH or TCR gene rearrangements that are 
unique to an individual patient’s leukemia or by 
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means of flow cytometric detection of aberrant 
combinations of cell-surface antigens.47,48

The risk of treatment failure and death is 3 to 
5 times as high among children with levels of 
minimal residual disease that are 0.01% or higher 
at the end of induction therapy and at later time 
points than among those with levels that are 
lower than 0.01%.45,46,49,50 Intensification of thera­
py for patients with higher levels of minimal re­
sidual disease improves their outcome.48,51 Emerg­
ing next-generation-sequencing techniques for 
detection of minimal residual disease may be 
useful by providing sensitive detection of leuke­
mia cells below the level detected reliably by 
other techniques.52

Tr e atmen t

Improvements in Survival over Time

Almost 50 years ago, combination chemotherapy 
induced remission (disappearance of clinical evi­
dence of leukemia and restoration of normal 
hematopoiesis) in 80 to 90% of children with 
ALL. However, the disease relapsed in almost all 
these children, usually in the CNS, with survival 

rates of 10 to 20%.53 Survival increased consider­
ably with the addition of craniospinal or cranial 
irradiation and intrathecal chemotherapy.54

A major milestone in therapy for children 
with ALL was the development of an intensive 
eight-drug, 8-week induction and consolidation 
regimen as introduced by Riehm et al.55 This regi­
men, which is now called protocol I, became the 
basis for the Berlin–Frankfurt–Münster regimen, 
which is the core of most contemporary therapies 
for ALL.

Since this regimen was introduced, large co­
operative research groups and individual institu­
tions have enrolled 75 to 95% of children who 
have a diagnosis of ALL in North America and 
Western Europe into clinical trials. These trials 
have led to remarkable improvements in survival, 
with 5-year event-free survival rates of up to 85% 
and overall survival rates of up to 90%, according 
to the most recently reported data (Table 3).37

Contemporary Therapy

The basic components of various therapies for 
children with ALL are similar and include sev­
eral discrete phases. Induction therapy lasts 4 to 
6 weeks and includes a glucocorticoid (prednisone 
or dexamethasone), vincristine, an asparaginase 
preparation, optional use of an anthracycline, and 
intrathecal chemotherapy. Almost all patients at­
tain remission, but this is not a cure, since relapse 
will occur universally without additional therapy.

After remission, treatment includes 6 to 8 
months of intensive combination chemotherapy 
that is designed to consolidate remission and 
prevent development of overt CNS leukemia. 
Treatment in an 8-week delayed-intensification 
(protocol II) phase, based on the 8-week Berlin–
Frankfurt–Münster protocol I, is then administered. 
Repeated courses of methotrexate, administered 
either through short intravenous infusion or at high 
doses over 24 hours followed by administration of 
folinic acid to “rescue” normal tissues from toxic 
effects, are a critical component of contempo­
rary ALL regimens.

Patients then receive low-intensity “anti­
metabolite”-based maintenance therapy for 18 to 
30 months. This therapy consists of daily oral 
mercaptopurine or thioguanine and weekly oral 
methotrexate. Some regimens also include peri­
odic 5-to-7-day “pulses” of glucocorticoids and 
vincristine. The exact reasons why maintenance 
therapy is required and the most effective composi­

Characteristic
Precursor B-Cell ALL 

 (N=8393)
T-Cell ALL 
 (N=1671)

number (percent)

Race†

White 6375 (76.0) 1219 (73.0)

Black 542 (6.5) 230 (13.8)

Asian 374 (4.5) 85 (5.1)

Other 254 (3.0) 32 (1.9)

Unknown 848 (10.1) 105 (6.3)

Ethnic group†

Hispanic 1809 (21.6) 238 (14.2)

Not Hispanic 6243 (74.4) 1373 (82.2)

Unknown 341 (4.1) 60 (3.6)

Sex

Female 3831 (45.6) 450 (26.9)

Male 4562 (54.4) 1221 (73.1)

*	�Data are from unpublished results of COG ALL trials AALL0232 (ClinicalTrials.
gov number, NCT00075725), AALL0331 (NCT00103285), and AALL0434 
(NCT00408005). Percentages may not sum to 100 owing to rounding.

†	�Race or ethnic group was reported by parents or guardians.

Table 2. Demographic Characteristics of Patients in Children’s Oncology 
Group (COG) ALL Trials.*
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tion and duration of chemotherapy are unknown. 
Because maintenance therapy is prolonged and 
requires daily oral drug administration, adherence 
can be problematic; 20% of patients are less than 
90% adherent, and decreased adherence is associ­
ated with a risk of relapse that is 4 times as high 
as the risk among patients whose rate of adher­
ence is 90% or more.62 Host polymorphisms may 
influence both the efficacy and toxicity of mer­
captopurine, which is the backbone of mainte­
nance therapy.63

CNS-Directed Therapy

Cranial irradiation dramatically improved cure 
rates among patients with ALL in the 1960s and 
1970s, but it was associated with an increased 
risk of secondary CNS tumors, delayed growth, 
endocrinopathies, and neurocognitive effects.64 
Consequently, CNS irradiation has been limited to 
progressively smaller patient subgroups over time.

Several research groups have eliminated CNS 
irradiation for most or all children with newly 
diagnosed ALL, and their results are quite simi­
lar to those obtained by groups that continue to 
include irradiation in therapy for children with 
ALL.56,59 The current role of CNS irradiation is 
controversial, but all groups now treat at least 
80% of children who have newly diagnosed ALL 
without the use of cranial irradiation.

Treatment of Relapsed ALL, Including 
Hematopoietic-Cell Transplantation

Relapse occurs in 15 to 20% of children with ALL, 
and cure rates are much lower after relapse.65 Prog­
nostic factors at relapse include the time to re­
lapse (a shorter time is associated with a worse 
prognosis), immunophenotype (T-cell immuno­
phenotype is associated with a worse prognosis), 
and the site of relapse (bone marrow disease is 
associated with a worse prognosis than extra­
medullary disease).66 Leukemia cells obtained from 
patients with early relapse frequently harbor mu­
tations that decrease sensitivity to common che­
motherapy drugs.67,68 If relapse occurs after the 
completion of primary treatment, most children 
will enter a second remission, and the chance for 
cure is about 50%. If relapse occurs during ther­
apy, the chance of attaining a second remission is 
only 50 to 70%, and only 20 to 30% of patients 
are cured.

Allogeneic hematopoietic-cell transplantation 
is used much more commonly after relapse (in 
≥50% of patients) than during primary therapy 

(in 5 to 10% of patients). Assessment of the mini­
mal residual disease response may be helpful in 
determining which patients should undergo trans­
plantation during a second remission and which 
patients should not.69

ALL is frequently a polyclonal disease, and 
mutations in subclones may be selected by chemo­
therapy and promote resistance. These include 
CREBBP mutations that are linked to resistance to 
glucocorticoids67 and NT5C2 and PRPS1 mutations 
that are associated with resistance to thiopu­
rines.68,70,71 In future studies, it will be important 
to identify emerging mutations that are associ­
ated with resistance and explore the potential 
for modifying therapy to circumvent relapse.

Targeted Therapy and Precision Medicine

The dramatic improvements in survival among 
children with ALL over the past 50 years are due 
almost exclusively to identification of the most 
effective doses and schedules of chemotherapeu­
tic agents that have been widely available for de­
cades rather than to the development of new 
therapies. Recent discoveries regarding the genetic 
basis of ALL and the development of therapies 
that target molecular lesions that drive survival 
of ALL cells have paved the way for the expanding 
use of precision-medicine approaches to cancer.72 
One notable example is the use of tyrosine kinase 
inhibitors in patients with chronic myeloid leu­
kemia, a cancer that is driven by the BCR-ABL1 
fusion oncoprotein.73 Treatment with tyrosine ki­
nase inhibitors (imatinib and related agents) has 
converted chronic myeloid leukemia from a dis­
ease requiring intensive therapy that often included 
hematopoietic stem-cell transplantation to a chronic 
disease that can in most cases be managed success­
fully for decades with oral tyrosine kinase in­
hibitors, with the potential for discontinuation 
of treatment in some patients.74

The BCR-ABL1 fusion protein also occurs in 
25% of adults and in 3 to 5% of children with 
ALL (Ph-positive ALL), and in ALL, as compared 
with chronic myeloid leukemia, it is associated 
with secondary genetic alterations, particularly 
alterations of IKZF1.75 Before the use of tyrosine 
kinase inhibitors, less than half the children 
with Ph-positive ALL survived.41 Combining ima­
tinib with cytotoxic chemotherapy has proved to 
be highly effective in children with Ph-positive 
ALL and has minimized the need for hematopoi­
etic-cell transplantation in the first remission.76-78

Ph-like ALL is associated with a poor progno­
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sis, and it is a logical candidate for individually 
tailored tyrosine kinase inhibitor therapy.30,43,79 A 
diverse range of genetic alterations activate kinase 
signaling in Ph-like ALL; these include a high 
frequency of rearrangements that converge on a 
limited number of signaling pathways, including 
ABL-class and JAK–STAT signaling. Extensive pre­
clinical studies show that the activation of sig­
naling pathways induced by these alterations is 
sensitive to tyrosine kinase inhibitors; this sug­
gests that precision-medicine approaches should 
be successful in this ALL subgroup. These findings 
are supported by anecdotal reports of dramatic 
responses of chemotherapy-refractory Ph-like ALL 
to tyrosine kinase inhibitor therapy.30,80 This is 
particularly important in older children and 
adults, in whom Ph-like ALL is more common.30

An important challenge in the design of future 
clinical trials will be to ensure adequate enroll­
ment of patients harboring each class of genetic 
alteration. To meet this challenge, international 
clinical trials that involve multiple cooperative 
groups will have to be developed, as has been 
done successfully in studies of Ph-positive ALL.

Immunotherapy

CD19 is a cell-surface antigen that is present at 
high density on most B-cell ALL cells. Several 
groups have developed strategies to transduce au­
tologous T-cells with an anti-CD19 antibody frag­
ment coupled to intracellular signaling domains of 
the T-cell receptor, thereby redirecting cytotoxic 
T lymphocytes to recognize and kill B-cell ALL 
cells. These chimeric antigen receptor–modified 
T cells provide a major new treatment option.

In one study, 30 children with heavily pre­
treated ALL that had relapsed multiple times were 
treated with chimeric antigen receptor–modified 
T cells; 90% of the children attained remission, 
with sustained remission in about two thirds. 
Approximately three quarters of the children 
were alive 6 months after the infusion.81 Remis­
sions were durable with 1 to 3 years of follow-up. 
Many patients had a severe cytokine-release 
syndrome after activation of the cytotoxic T cells 
in vivo. This syndrome was accompanied by 
high levels of serum interleukin-6 that could be 
treated successfully with the anti–interleukin-6 
monoclonal antibody tocilizumab. Studies of the 
durability of chimeric antigen receptor T-cell 
therapy (ClinicalTrials.gov number, NCT02445222) 
and its role in patients with ALL who have less-
advanced disease (NCT02435849) are ongoing.

A different strategy to harness the T-cell im­
mune response against ALL cells is provided by 
blinatumomab, a genetically modified antibody 
that contains fragments that recognize both CD19 
and CD3 (which is present on all T cells) and there­
fore brings T cells into direct contact with B-cell 
ALL cells, allowing the cytotoxic T cells to kill 
them.82 Blinatumomab is now being tested in 
children with a first relapse of B-cell ALL 
(NCT02101853).

Short-Term and Long-Term Toxic Effects  
of Treatment

About 1 to 2% of children with ALL die before 
attaining remission, and an additional 1 to 2% 
die from toxic effects during remission.83 Patients 
with Down’s syndrome, infants, older teenagers, 
and those receiving more intensive therapy have 
an increased risk of death from toxic effects, 
mostly due to infection. Risks can be mitigated 
by modifications to therapy and supportive care. 
As cure rates for childhood ALL improve, treat­
ment-related death accounts for a higher percent­
age of all deaths.

One of the most vexing problems associated 
with contemporary therapy for ALL is osteone­
crosis, which occurs in 5 to 10% of patients.84 
The risk is much higher among teenagers (15 to 
20%) than among young children, and girls are 
affected more commonly than boys. Osteonecro­
sis most commonly affects major joints, particu­
larly the hips, knees, shoulders, and ankles, and 
often requires surgical management, including 
joint replacement. Modifications to glucocorti­
coid administration schedules can decrease the 
risk of osteonecrosis.85

Additional treatment-related effects include 
the metabolic syndrome and obesity, cardiovas­
cular impairment, and CNS and peripheral nervous 
system toxic effects. Each is caused by highly effec­
tive antileukemic agents, and a person’s risk of 
toxic effects is influenced by host genetic factors 
that influence drug metabolism and activity. 
Thus, an important goal is the tailoring of drug 
exposure according to the predicted risk of both 
relapse and specific toxic effects.

A child who is cured of ALL is expected to 
have 60 to 80 years of remaining life. Critical 
questions are whether that expected life span is 
shortened by the leukemia, its treatment, or both, 
whether chronic health conditions that affect daily 
life develop at a higher frequency or increased se­
verity in survivors than in persons who were never 
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treated for childhood ALL, and whether there 
are lasting emotional or neurocognitive effects 
that limit full realization of a survivor’s poten­
tial. Unfortunately, many ALL survivors do have 
chronic toxic effects,86 and the neurocognitive 
effects appear to increase as they approach mid­
dle age.64 Continued long-term follow-up of per­
sons who had ALL in childhood is essential to 
define the risks and to develop strategies to de­
crease risks, ameliorate toxic effects, or both.

Implic ations of the Success  
of Tr e atmen t

Survival rates among teenagers with ALL are in­
ferior to those among young children, and sur­
vival is even worse among young adults.87,88 The 
reasons for these differences are multifactorial 
and include treatment factors, a higher preva­
lence of unfavorable genetic subtypes among the 
older patients, the reduced ability of teenagers 
and young adults to receive intensive therapy with­
out untoward side effects, and social factors such 
as insurance coverage and lack of parental super­
vision of therapy. Institutions and cooperative 
groups treating young adults with ALL have suc­
cessfully adopted treatment modeled on pediatric 
regimens. This strategy is feasible for patients up 
to about 50 years of age, with early results sug­
gesting major improvements in survival.89

Since the population of children is higher in 
low-income and middle-income countries than in 
high-income countries, the total number of chil­
dren with a diagnosis of ALL is also higher in 
these countries; these children have inferior sur­
vival as compared with children treated in high-
income countries.90 Because ALL can be diagnosed 
with simple techniques and treated successfully 
with relatively inexpensive chemotherapeutic agents, 

it is feasible to rapidly improve the outcome in 
children with ALL in low-income and middle-
income countries. Partnerships and “twinning” 
relationships between centers in high-income cen­
ters in North America and Western Europe and 
pediatric cancer centers in Asia, Central and South 
America, and Eastern Europe have substantially 
improved survival among children with ALL.90-92

Conclusions

In the past few years, we have witnessed tremen­
dous advances in our understanding of the biol­
ogy of ALL and the remarkable efficacy of targeted 
chemical and biologic therapeutic approaches in 
otherwise refractory disease. It is anticipated that 
in the next several years, the genomic landscape 
of ALL will be completely described, the biologic 
causes for treatment failure fully elucidated, and 
the roles of a range of new chemical and bio­
logic agents defined. As the cure rate for child­
hood ALL approaches 100%, major challenges 
will be to identify persons who require less inten­
sive therapy to achieve cure and to refine com­
plex, toxic regimens to incorporate simpler, safer 
approaches that will result in a high quality of 
life coupled with long-term survival.
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